
Malware Collection and Analysis via Hardware
Virtualization

Tamas Kristof Lengyel
University of Connecticut

2015

Abstract

Malware is one of the biggest security threat today and deploying effective defen-

sive solutions requires the collection and rapid analysis of a continuously increasing

number of samples. The collection and analysis is greatly complicated by the pro-

liferation of metamorphic malware as the efficacy of signature-based static analysis

systems is greatly reduced. While honeypots and dynamic malware analysis has been

effectively deployed to combat the problem, significant challenges remain.

The rapidly increasing number of malware samples poses a particular challenge

as it greatly inflates the cost of the hardware required to process the influx. As modern

malware also deploys anti-debugging and obfuscation techniques, the time it takes to

formulate effective solutions is further exacerbated. There is a clear need for effective

scalability in automated malware collection and analysis.

At the same time, modern malware can both detect the monitoring environment

and hide in unmonitored corners of the system. It has also been observed that mal-

ware modifies its run-time behavior to lead the analysis system astray when it detects

a monitoring environment. Consequently, it is critical to create a stealthy environment

to hide the presence of the data collection from the external attacker. Such systems

Tamas Kristof Lengyel - University of Connecticut, 2015

also need to isolate critical system components from the executing malware sample

while keeping the concurrent collection and analysis sessions separate.

Furthermore, the fidelity of the collected data is essential for effective dynamic

analysis. As rootkits now employ a variety of techniques to hide their presence on

a system, the broader the scope of data collection, the more likely the analysis will

reveal useful features.

Over the last decade hardware virtualization has been proposed to develop such

tools with promising results. In this dissertation we present a systematic evaluation

of hardware virtualization as an underlying technology to construct effective malware

collection and analysis systems. The evaluation is realized via the combination of four

distinct objectives such systems need to fulfill: scalability, stealth, fidelity and isolation.

Malware Collection and Analysis via Hardware Virtualization

Tamas Kristof Lengyel

B.Sc., University of Connecticut, 2008

M.Sc., University of Connecticut, 2015

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

at the

University of Connecticut

2015

i

© Copyright by

Tamas Kristof Lengyel

2015

ii

APPROVAL PAGE

Doctor of Philosophy Dissertation

Malware Collection and Analysis via Hardware Virtualization

Presented by

Tamas Kristof Lengyel, B.Sc., M.Sc.

Co-major advisor
Dr. Laurent Michel

Co-major advisor
Dr. Aggelos Kiayias

Associate advisor
Dr. Bing Wang

Associate advisor
Dr. Alexander A. Shvartzmann

Associate advisor
Dr. Bryan D. Payne

University of Connecticut

2015

iii

Acknowledgments

I would like to express my appreciation and thanks to my advisory committee, Pro-

fessor Dr. Aggelos Kiayias, Professor Dr. Laurent Michel, Professor Dr. Bing Wang,

Professor Dr. Alexander Shwartzmann and Dr. Bryan D. Payne. A special thanks to Pro-

fessor Dr. Claudia Eckert for her supervision during my visit at the Technische Universität

München and to Professor Dr. John Chandy for his continued support of me as a GAANN

fellow. I would like to thank you all for encouraging my research and for allowing me to

grow as a research scientist. Your advice on both research as well as on my career have

been priceless.

A special thanks to my family. Words cannot express how grateful I am to my mother

and father for all of the sacrifices that you’ve made on my behalf. I would also like to thank

all of my friends and colleagues who supported me in writing, and inspired me to strive

towards my best. I’m grateful to Thomas Kittel, Steve Maresca, Justin Neumann, Jonas

Pfoh, Jacob Torrey, George Webster and Sebastian Vogl for all the help and guidance

during my research. I would like to also thank the countless open-source developers who

have helped and inspired me during this research.

Finally and most importantly I would like to express appreciation to my beloved Bori

who was always my support. Being able to share this journey with you has been an

incredible blessing.

iv

Credits

I wish to express my thanks for the privilege to co-author several papers over the years

which have been instrumental in writing this Thesis. In particular, I would like to thank

Jonas Pfoh, Sebastian Vogl, Steve Maresca and Thomas Kittel for their contributions to

the un-published paper Virtual machine introspection: a decade in review, components of

which aided the formation of the Related work section of this Thesis. I would also like to

thank Justin Neumann, Steve Maresca, Bryan D. Payne and Aggelos Kiayias for reviewing

and editing Virtual Machine Introspection in a Hybrid Honeypot Architecture and Towards

Hybrid Honeynets via Virtual Machine Introspection and Cloning, publications which form

the base of the Malware collection section of this thesis. Thanks to Steve Maresca, Bryan

D. Payne, George Webster, Sebastian Vogl and Aggelos Kiayias for the discussions, re-

viewing and editing of Scalability, Fidelity and Stealth in the DRAKVUF Dynamic Malware

Analysis System which has been constructive in the formation of the Malware analysis

section of this Thesis. Additional thanks to Jonas Pfoh, Thomas Kittel, George Webster,

Jacob Torrey and Claudia Eckert for their insight, reviewing and editing of Pitfalls of virtual

machine introspection on modern hardware, Multi-tiered Security Architecture for ARM

via the Virtualization and Security Extensions and Virtual Machine Introspection with Xen

on ARM which aided in forming the Hardware and Software limitations section of this

Thesis. Finally, I would like to thank all other co-authors for the privilege to work together

on our publications on topics unrelated to this Thesis.

v

Contents

1 Introduction 1
1.1 Problem statement . 3
1.2 Scope . 4
1.3 Methodology and Limitations . 7
1.4 Publications . 9
1.5 Outline . 10

2 Related work 11
2.1 Malware collection . 11
2.2 Malware analysis . 13
2.3 Monitoring via Hardware Virtualization . 15

2.3.1 In-band delivery . 16
2.3.2 Out-of-band delivery . 19

3 Malware collection 26
3.1 Challenges . 26
3.2 System Design . 28

3.2.1 Hardware virtualization based subsystem 29
3.2.2 Network setup and fall-back system 31
3.2.3 Fidelity and the path to Scalability 32

3.3 Initial Experiments . 34
3.3.1 Performance . 34
3.3.2 Testing with Metasploit . 35
3.3.3 Rootkits . 36
3.3.4 Live sessions . 37

3.4 Improving Scalability . 39
3.4.1 Memory sharing . 41
3.4.2 Clone-routing . 42

3.5 Final Experiments . 45
3.5.1 Idle clones . 45
3.5.2 SMB and RDP . 47
3.5.3 Live sessions . 48

3.6 Summary . 52

4 Malware analysis 54
4.1 Challenges . 55
4.2 Overview of Hardware Virtualization Extensions 57

4.2.1 VM Scheduling . 58
4.2.2 Optional Traps . 59
4.2.3 Two-stage paging . 60

4.3 System design . 62
4.4 Stealth . 65

vi

4.5 Execution tracing . 72
4.5.1 Tackling Direct Kernel Object Manipulation (DKOM) attacks 73
4.5.2 Monitoring filesystem accesses with memory events 74
4.5.3 Carving deleted files from memory 76

4.6 Experimental results . 77
4.6.1 Rootkits . 78
4.6.2 Anti-VM malware samples . 80
4.6.3 100k+ samples . 84
4.6.4 Stalling code . 92
4.6.5 Measuring overhead and throughput 96

4.7 Summary . 99

5 Hardware and Software limitations 101
5.1 Evading monitoring . 101
5.2 Attacks via the TLB . 103

5.2.1 The effects of tagged TLB . 106
5.3 Limitations of the EPT . 108

5.3.1 Catching modifications . 108
5.3.2 Catching data-leaks . 110
5.3.3 Virtual DMA and emulation . 111

5.4 Layers below the hypervisor . 112
5.4.1 ARM TrustZone . 112
5.4.2 System Management Mode . 114
5.4.3 Dual-monitor mode SMM . 115

5.5 Summary . 117

6 Conclusions 118
6.1 Summary . 118
6.2 Contributions . 119
6.3 Future directions . 120

6.3.1 Intel Virtualization Exceptions . 120
6.3.2 Mobile malware . 121
6.3.3 Data-only malware . 122

6.4 Concluding thoughts . 122

Acronyms 125

Appendix A 128

References 134

vii

List of Figures

1 Malware collection system implemented on Xen 28
2 Overview of the different communication paths within the honeypot. Only

one connection is allowed to the HIH at any given time. 32
3 Benchmarks of Volatility scans . 34
4 Benchmarks showing the setup times of VMI-Honeymon. Snapshot oper-

ations are performed only once, while Check and Revert are performed at
the end of each session. 35

5 Unique binary captures with VirusTotal detection 38
6 Honeypot statistics. Note: A Connection Attempt is defined as any attempt

made by the High-Interaction Honeypot (HIH) to connect to an IP other than
the attacker’s IP. A Session is defined as all interactions with an attacker. . 40

7 Clone routing layout - externally initiated. 43
8 Clone routing layout - internally initiated. 43
9 Clone shared memory when system is idle. 46
10 CoW RAM allocated when system is idle. 46
11 Clone shared memory after RDP connection. 47
12 Clone shared memory after SMB exploitation. 47
13 Clone activity by number of occurrences. 49
14 Clone activity by time spent in each state. 49
15 Shared memory distribution of Windows XP SP3. 49
16 Shared memory distribution of Windows 7 SP1. 49
17 Projected memory savings of Windows XP SP3. µ=75.52MB σ=10.1MB . . 51
18 Projected memory savings of Windows 7 SP1. µ=170.94MB σ=48.3MB . . 51
19 CPU modes available on modern x86 Intel CPUs as descirbed by the Intel

SDM [56] . 58
20 Summary of VMX operation on Intel CPUs 58
21 EPT Overview . 60
22 Handling an EPT violation on Xen. 60
23 System overview of DRAKVUF . 62
24 Initiating the execution of malware samples without in-guest agents 65
25 Setup of the stack for function call injection of kernel32.dll!CreateProcessA

on a 32-bit Windows 7. The setup is similar for 64-bit Windows, where
p1-p4 are passed on registers instead of the stack. 70

26 Tracking file accesses by monitoring the allocation of FILE OBJECTs in
the Windows kernel heap. 75

27 Top 10 monitored kernel functions in terms of average number of observed
executions. 81

28 Breakdown of 8797 intercepted file deletion requests by type in recent mal-
ware samples. 81

29 Number of Read Extended Page Table (EPT) violations versus breakpoints
hit within 60 seconds when trapping all internal kernel functions. 82

30 Projected Copy-on-Write (CoW) memory allocations (µ = 764MB, σ = 151MB). 82

viii

31 Distribution of observed syscalls used by percent of malware samples . . . 88
32 Distribution of observed heap allocations used by percent of malware sam-

ples . 89
33 Top 10 most commonly deleted files by type 90
34 Top 10 most commonly deleted files by type, larger then 10KB 90
35 Types of executables dumped . 90
36 Distribution of samples based on its usage of NtDelayExecution 95
37 Distribution of samples based on its usage of NtQuerySystemTime 95
38 Relation between the overhead and the number of #BP hit. 98
39 Overview of the split and tagged TLB architecture. 103
40 The critical memory region at which EPT violations may occur that could

mean an access to the protected region (void *next). 109
41 Overview of relationship between SMM, VMM, and VM. 114

ix

List of Tables

1 Volatility tests utilized. 29
2 Sinowal Mebroot Torpig detection (snippet). 37
3 Conficker infection (snippet). 39
4 Function prototype of the CreateProcessA function 66
5 Strings embedded in the temporary files of MultiPlug hint at anti-debugging

techniques employed. 83
6 Process names with no observed execution of syscalls or heap allocations 86
7 DNS record lookups of type NS . 91
8 Top level domain names recorded in the DNS requests 91
9 TLB poising algorithm as described by [6]. 104
10 Top 50 DNS requests . 133

x

1 Introduction

Over the last decade malware has become a central tool used by criminal organizations

to conduct crime over the Internet. Based on the financial implications of the widespread

occurrence of security breaches, an in-depth understanding of malware internals is critical

for designing and deploying effective defensive solutions.

The automation of malware collection with the use of honeypots has been an effective

tool in the battle against malware. In the last decade there has been a concentrated

effort to push honeypots to virtualized environments to further improve the efficacy of

these tools [4, 58, 59]. Virtualized environments provide many benefits for honeypots as

they simplify the containment and isolation of infections. Virtualization also provides easy

and convenient methods for reverting a compromised honeypot to a clean state after the

required data and artifacts have been extracted.

Since the proliferation of poli- and metamorphic malware, dynamic malware analysis

has also become an effective approach to understand and categorize malware. Dynamic

analysis relies on observing the execution of the malware sample in a quarantined and

monitored environment to obtain behavioral information and to extract the unpacked ver-

sion of the sample [36,127,132]. The interaction between the executing malware sample

and the host OS allows dynamic malware analysis systems to collect behavioral charac-

teristics that aid in formulating defensive steps by identifying attack vectors and vulnera-

bilities the malware uses. Consequently, dynamic malware analysis relies on the breadth

and fidelity of the collected data. Dynamic malware analysis can also greatly benefit from

virtual environments as it enables real-time monitoring of the execution, disk and memory

of the sandbox, providing a direct way to observe infections as they occur and their effects

on the compromised systems. Furthermore, virtualization allows such observations to be

made from a safe vantage point, providing complete view into the system.

Significant challenges remain to be solved however. The increasing number of mal-

1

ware samples poses a particular challenge as it greatly inflates the cost of hardware

required for effective analysis. In conjunction with anti-debugging and obfuscation tech-

niques, the time it takes to formulate effective solutions is greatly exacerbated [13, 48].

There is a clear need for effective scalability in automated malware collection and analy-

sis.

As honeypots and dynamic malware analysis systems have become widely deployed,

malware has evolved to detect and evade such systems by either refusing to connect

to [61], or to execute in a sandboxed environment [78]. It has also been observed that

malware modifies its run-time behavior to lead the analysis system astray [7]. Conse-

quently, it is critical for honeypots and dynamic malware analysis systems to provide a

stealthy and isolated environment to hide the presence of the data collection from the

external attacker and protect the data collection system from the executing sample.

Furthermore, the fidelity of the collected data is essential for effective dynamic anal-

ysis. As rootkits now employ a variety of techniques to hide their presence on a system,

the broader the scope of data collection, the more likely the analysis will reveal useful fea-

tures. While emulation and binary instrumentation based approaches have been shown

to provide the greatest depth of information [33], the hardware emulators they rely on

incur a prohibitive performance overhead. Furthermore, hardware emulators inherently

suffer from incomplete and inaccurate system emulation, which could lead malware to

easily detect such environments to thwart analysis.

Hardware virtualization has also been proposed and studied over the last decade as

an underlying platform to develop malware collection and analysis tools. In this thesis

we present a comprehensive evaluation of the technique’s application to malware collec-

tion and analysis. As part of this evalation, we formalize the core objectives such sys-

tems need to fulfill and present extensive experiments performed to aid us in determining

whether hardware virtualization is a viable method to construct such systems.

2

1.1 Problem statement

This dissertation details the evaluation of hardware virtualization as an underlying plat-

form for automated malware collection and analysis. The evaluation is realized via the

combination of four distinct objectives such systems need to fulfill: scalability, stealth,

fidelity and isolation. Each of these objectives are reviewed in turn:

(O1) Scalability The ever increasing number of in-the-wild malware requires automated

capture and analysis without incurring prohibitive hardware requirements. Unlike

emulation based systems, hardware virtualization requires the assignment of real

hardware resources, such as disk and RAM, for each virtual machine. Scalability in

our context thus means maximizing the number of concurrently active malware col-

lection and analysis sessions as to avoid the linear growth in hardware requirements

as the number of sessions is increased.

(O2) Stealth As modern malware effectively deploys anti-debugging and anti-forensic

techniques to hide from automated systems, effective stealth is required. Malware

should not be able to detect the monitoring environment regardless if it executes

within the sandbox, or if it is interacting with the sandbox remotely over a network.

Thus stealth in our context means the capability to execute malware samples without

the presence of the analysis engine being revealed to the malware.

(O3) Fidelity Formulating effective defense mechanisms requires the in-depth under-

standing of both the infection process and the run-time behavior of malware. Au-

tomated data-collection and artifact extraction thus has to accurately describe and

capture the process without the potential of acquiring tainted evidence. As mod-

ern malware has burrowed deep into operating systems in the form kernel-mode

rootkits, the automated process has to be aware that the guest internal informa-

tion may have been tampered with. Furthermore, modern malware has increasingly

3

became resident in memory-only, leaving limited to no traces on the hard-drive of

compromised machines. Thus, data-collection and artifact extraction has to take

into account these malware tendencies to provide the required fidelity in the col-

lected data.

(O4) Isolation The monitoring component has to be securely isolated from the execut-

ing sandbox environment as to minimize the potential of data contamination or

the chance of a breakout attack. The monitoring component should also be iso-

lated from critical system components as to minimize the exposure of the trusted

computing base in case such a breakout occurs. Furthermore, malware collection

and analysis sessions should be isolated from each other as to prevent the cross-

contamination of data during concurrent sessions.

1.2 Scope

In this thesis we extensively deal with the study of malware from many perspectives, thus it

is important to highlight and properly limit the scope of the investigation. In summary, this

thesis limits its scope to the study of malware collection and malware analysis from the

perspective of hardware virtualization. Many topics which have been discussed in prior art

in relation to these topics are considered out-of-scope for this thesis. We make our best

effort to address common questions that arise during the study of malware, and in some

cases we provide our own case-by-case analysis, but these discussion are provided solely

to aid the reader in obtaining a better perspective on the topic in general. Furthermore,

the prototypes herein presented only show limited aspects of how one may develop such

tools using virtualization, which we use to determine whether the core objectives can be

met with the use of virtualization.

Foremost, a question which we will not try to answer is: by what metric do we decide

what software is considered malicious (aka. malware)? While the body of work on the

topic is significant and has been approached from many angles, in our opinion the best

4

answer largely remains: it depends. It depends for example on who we ask, when we ask

or how we ask. Consider for example how a screen-capture software may be deemed

benign by the end-user, but be considered malicious by companies who want to protect

the video stream transmitted to the users’ screen for a one-time view. The very same

screen-capture software could be considered malicious by the end-user as well if it is

operated by a third-party without their permission. Furthermore, should we consider this

software in its entirety malicious, even when it does not actively perform its screen capture

function, just has the potential to do so? The answer to these question remains highly

subjective. In this thesis when we discuss specific pieces of malware, those have been

labeled as such by a third-party, such as anti-virus companies. Whether their classification

is justified remains out-of-scope for this thesis.

Another important topic we consider out-of-scope for this thesis is the reproducibly

of experiments. While reproducibility of experiments is a cornerstone of the scientific

method, it is the unfortunate case that many security research results remain irrepro-

ducible. The reason for this is partially caused by researcher never releasing their source

code. However, there is another fundamental reason why - even when the tools are re-

leased - we are unable to repeat the experiments exactly: many of the vectors determining

the results of the experiments are beyond our control. Experiments performed with live

malware samples that communicate with external systems are notoriously problematic.

In fact, an entire body of research has been dedicated to the study of malware that aims

to record as much of the environment as possible, so that the malware analysis sessions

can be replayed. In our opinion, such systems can still only capture a narrow scope of

data and thus provide incomplete replay capability. For example, it is impossible to record

data for which we have no sensors for. The most famous recent incident for such a case

would be the RowHammer hardware bug presented by Google. Nevertheless, amicable

attempts are being made to develop such tools regardless of their limitations. During the

research leading up to this thesis we diligently worked on open-sourcing all tools and

5

techniques so that fellow researchers may use them to perform their own experiments.

However, exact replication of live malware experiments remains out-of-scope for this the-

sis.

In this thesis we also consider the detection of virtualized environments distinct from

the detection of malware collection and analysis systems. As hardware virtualization is

already ubiquitous in computing environments, modern malware requires separate mech-

anisms to distinguish between monitored and unmonitored virtual environments. It is

nevertheless the case today that many malware solely rely on the detection of virtualized

environments to determine whether to continue operation or not. In this thesis we con-

sider countering such malware to be out-of-scope as their prevalence and effectiveness

will foreseeably continue to decline.

Similarly, deciding what is the optimal time-frame for collection and analysis, and

whether we have collected enough data is also considered to be out-of-scope. Given

that deciding whether and when a given software will exhibit a specific type of behavior

is reducible to the halting problem, we do not attempt to determine an optimal time or

optimal volume of data to be collected. Rather, we observe what generic time-out periods

have been used in prior research and use similar values in our experiments. Furthermore,

for our malware collection system, we additionally limit the time and scope of data collec-

tion in case we observ malware propagation attempts made to systems outside our test

environment as a security precaution, which can also be considered standard practice.

Finally, we present only limited prototypes of hardware virtualization based malware

collection and analysis systems. As our goal is evaluate the use of hardware virtualization

itself, we consider it out-of-scope to develop comprehensive tools for the purpose of this

dissertation. Our goal is simply to determine whether it is possible to develop such tools

and to determine what constrains may apply and what limitations need to be kept in mind.

6

1.3 Methodology and Limitations

In our systematic evaluation we limit our scientific endeavor to the study of the core hy-

pothesis: hardware virtualization is an effective technique to perform both malware collec-

tion and malware analysis such that our Objectives are met. The methodology by which

we performed the evaluation differs depending on the Objective. For example, while Scal-

ability can be largely evaluated empirically, Stealth and Fidelity remains an inexact study.

The reason for this is rooted in the evolving nature of malware. Without a universal model

of what malware is and what behavior is malicious, the best we can do is study the current

state-of-the-art for what is commonly considered to be malware and present a case-by-

case evaluation whether are Objectives are met based on that study. As a consequence,

our methodology in such cases will inadvertantly only provide results that are indicative,

rather than definitive.

• Our methodology to measure Scalability has been two fold. First, for malware col-

lection systems we perform measurements by calculating the maximum number

of concurrent network sessions that can be maintained with limited hardware re-

sources, while matching all Objectives. Second, for malware analysis we measure

the throughput of the system by calculating the maximum number of malware anal-

ysis sessions that can be performed in parallel on limited hardware resources, while

matching all Objectives. Based on these measurements we extrapolate the ex-

pected scalability of the system.

• Our methodology to evaluate Stealth has been based on the study of modern mal-

ware behaviors found in literature. We researched state-of-the-art malware tech-

niques used to detect analysis and capture environments and actively countered

these techniques, which have been shown to be effective both in prior art and in our

own experiments. Nevertheless, our method offers only limited guarantees that the

Objective will be met once malware evolves new techniques.

7

• Our methodology to measure Fidelity has also been based on the study of mod-

ern malware behaviors found in literature. We evaluated techniques employed by

modern malware that allow them to hide in previously unmonitored corners of the

systems and developed methods which allow us to retain visibility into the behavior

of such evasive malware as well. The reasoning behind our methodology has been

based on the assumption that the more verbose and inclusive the data collection is,

it would be reasonable to assert that the chances of observing behavior that is useful

for the understanding said malware will be higher. Thus, our methodology focuses

on evaluating the scope and method of data collection to show how it maximizes the

visibility. We do not attempt to calculate or evaluate how useful the collected data is,

as in our opinion that is a highly subjective metric unfit for scientific evaluation. How-

ever, we present numerous cases to highlight how we have been able to observe

behavior that thus far evaded other analysis systems, and even human analysts.

• Our methodology to evaluate Isolation has been based on the study of the attack sur-

face of modern hypervisors systems, presented in prior art and based on our own

research. Based on this study, we created a heavily disaggregated and hardened

environment to minimize the exposure of the known attack surface and a design is

presented that highlights how the architecture maximizes the adherence to the Ob-

jective. Our method to evaluate this Isolation is based on the analysis of the attack

surface. This analysis is provided with the understanding that complete isolation is

impossible to achieve on modern hardware and thus the Objective is expected to be

only partially met as future malware is likely to discover new methods to circumvent

it.

8

1.4 Publications

Most of the material presented in this dissertation has appeared previously in the following

publications, in chronological order:

• T.K. Lengyel, J. Neumann, S. Maresca, B.D. Payne, A. Kiayias; (August 2012).

”Virtual Machine Introspection in a Hybrid Honeypot Architecture.” Proceedings of

the 5th Workshop on Cyber Security Experimentation and Test, Bellevue WA, USA.

Acceptance rate: 12/25 = 48%.

• T.K. Lengyel, J. Neumann, S. Maresca, A. Kiayias; (June 2013). ”Towards Hybrid

Honeynets via Virtual Machine Introspection and Cloning.” Proceedings of the 7th

International Conference on Network and System Security, Madrid, Spain. Accep-

tance rate: 41/169 = 24%.

• T.K. Lengyel, T. Kittel, J. Pfoh, C. Eckert; (September 2014). ”Multi-tiered Security

Architecture for ARM via the Virtualization and Security Extensions.” Proceedings of

the 1st Workshop on Security in highly connected IT systems, Munich, Germany.

• T.K. Lengyel, T. Kittel, G. Webster, J. Torrey, C. Eckert; (December 2014). ”Pit-

falls of virtual machine introspection on modern hardware.” Proceedings of the 1st

Workshop on Malware Memory Forensics, New Orleans LA, USA.

• T. Kittel, S. Vogl, T.K. Lengyel, J. Pfoh, C. Eckert; (December 2014). ”Code Valida-

tion for Modern OS Kernels.” Proceedings of the 1st Workshop on Malware Memory

Forensics, New Orleans LA, USA.

• T.K. Lengyel, S. Maresca, B.D. Payne, G. Webster, S. Vogl, A. Kiayias; (December

2014). ”Scalability, Fidelity and Stealth in the DRAKVUF Dynamic Malware Analysis

System.” Proceedings of the 30th Annual Computer Security Applications Confer-

ence, New Orleans LA, USA. Acceptance rate: 47/236 = 19.9%.

9

• T.K. Lengyel, T. Kittel, C. Eckert; (September 2015). ”Virtual Machine Introspection

with Xen on ARM” Proceedings of the 2nd Workshop on Security in highly connected

IT systems, Vienna, Austria.

• A. Fischer, T. Kittel, B. Kolosnjaji, T.K. Lengyel, W. Mandarawi, H. de Meer, T. Mller,

M. Protsenko, H.P. Reiser, B. Taubmann, E. Weishup; (October 2015). ”CloudIDEA:

A Malware Defense Architecture for Cloud Data Centers.” Proceedings of the 5th In-

ternational Symposium on Cloud Computing, Trusted Computing and Secure Virtual

Infrastructures, Rhodes, Greece.

Specifically, the first two papers are about our malware collection system and are the

base of Chapter 3. The fourth paper forms the basis for Chapter 5 and the other papers

are the base for Chapter 4 where we discuss dynamic malware analysis.

1.5 Outline

The rest of this document is organized as follows. Chapter 2 reviews the literature of

hardware virtualization based malware collection and analysis. Chapter 3 discusses the

design and implementation of our malware collection system and presents the evaluation

of our core objectives via extensive experiments. We describe in Chapter 4 the design and

implementation of our dynamic malware analysis system, and with the aid of extensive

tests and experiments we evaluate our objectives. In Chapter 5 we take a look at various

hardware and software limitations that may impact similar hardware virtualization based

security systems, including the prototypes presented in this thesis. Finally, in Chapter 6

we provide a summary overview of our work, highlight the contributions made, discuss

future directions and present our concluding thoughts.

10

2 Related work

In the following we provide an overview of select publications that formed the base of our

inquiry. This chapter is organized into three subsections: first, we review prior work in

the development of malware collection systems; second, we turn our attention of malware

analysis; third, we discuss systems which proposed the use of hardware virtualization for

the development of security applications in general.

2.1 Malware collection

Honeypots over the last decade have seen a significant role in the battle against malware.

Honeypots have been developed with the purpose of capturing malware binaries and have

traditionally been categorized based on the underlying mechanisms they are implemented

with: emulation of vulnerable services or full-system exposure. The former has been

commonly referred to as Low-Interaction Honeypots (LIHs); the latter as HIHs.

One of the most commonly used open-source low-interaction honeypot is Dionaea.

Dionaea can be configured with a set of emulated services to mimic the behavior of known

vulnerabilities to capture malware binaries. However, in order to successfully capture

binaries, the interaction provided by the emulated services has to match with real-world

systems, which is a challenging task when we consider unknown (0-day) bugs malware

may seek to exploit.

Recent Honeypot developments have more closely focused on developing honey-

clients, such as PhoneyC [83]. Unlike regular honeypots - which passively wait for an

attacker to connect - honey-clients pro-actively connect to potentially malicious services.

The methods by which these systems have been developed closely resemble LIHs: emu-

lating vulnerable client-side programs, such as browsers, to trigger the malicious behavior

and capture of the exploit from the server.

High-interaction honeypots however have not seen wide-scale deployment, arguably

11

because of the high cost of maintenance. Furthermore, each high-interaction honeypot

has the potential to be turned into an attack vector itself, thus it can be potentially haz-

ardous to host such systems. HIH tools developed have also been shown to be vulnera-

ble to tampering. For example Sebek [54], a kernel module designed to provide stealthy

monitoring of a Windows operating system has been shown to be detectable shortly after

release [34]. Later efforts, such as Qebek [53] and VMscope [58] moved the monitoring

component into the emulation layer provided by systems such as QEMU.

A core limitation with HIHs is related to the need of assigning considerable hardware

resources to each HIH session. To address this problem, Honeybrid [11] was developed

as a transparent network proxy designed to reduce the load on HIHs by utilizing LIHs as

filters on the incoming attack traffic. By providing fine-grained control of the network flows,

the active connections can be switched transparently between the available honeypots.

Furthermore, the system was designed to allow custom extensions to easily integrate into

the decision engine of the system.

To address the excessive resource allocation problem when using hardware virtualiza-

tion based HIHs has been prominently addressed by Vrable et al. [120] who implemented

a highly scalable honeynet system named Potemkin. Potemkin focused on improving the

scalability of HIHs by observing that the high number of network connections to the hon-

eypot system have quickly exhausted the available hardware resources. Potemkin solved

the scaling issue associated with running a large number of nearly identical Virtual Ma-

chines (VMs) by introducing memory sharing that de-duplicates identical memory pages

present across VMs. The technique was built upon solutions introduced to the live VM

migration problem: optimizing the transfer time of a live VM’s memory from one physical

host to another. The insight into the problem was that a VM that had to be transferred

did not have to be paused for the entire migration time, as the majority of the pages re-

main unchanged during the transfer period. By tracking the pages that do change during

the first phase of the live migration period, the downtime of the VM can be limited to the

12

period of transferring the modified pages only. The same technique that allows tracking

of page modifications opened the door for memory de-duplication using a CoW approach

implemented by Potemkin. However, Potemkin lacked monitoring and artifact extraction

mechanisms which had to be performed manually.

Later systems, such as the one developed by Asrigo et al. [4] attempted to use the

hardware virtualization for in-depth monitoring of honeypots. However, due to the lack of

proper hardware support at the time, components of the monitor still had to be placed

within the guest. These in-guest components thus shared a similar attack surface as, for

example, the Sebek honeypot did. Despite these short-coming, the hybrid model of in-

band delivery of interesting events to external monitoring applications has also been the

base for subsequent systems, which we further discuss in Section 2.3.1.

2.2 Malware analysis

Today, anti-virus systems heavily make use of binary signatures. Traditionally, malware

binaries obtained from honeypots and other sources are first fingerprinted using hashing

and static analysis methods [36] as to avoid repeating the analysis of already known bi-

naries. However, as a counter-measure, malware has started to restructure the binaries

between infections as to avoid being easily identified, known as the packer problem [48].

Consequently, manual reverse engineering efforts can no longer keep up with the influx

of binaries. As a solution, dynamic malware analysis was proposed to automatically ex-

ecute and extract the relevant information and artifacts from the executing binary. The

information obtained can thus aid in identifying malware to speed up the development of

protective solutions. The observed behavior of the malware sample can itself be turned

into a behavioral signature [90] to be used by end-point security solutions. Furthermore,

the behavioral information can also reveal the infrastructure the malware relies on (com-

mand and control channels, domain names, etc.) which can then be taken offline by

authorities [84].

13

CWSandbox [127] was one the of first dynamic malware analysis systems to utilize

a sandbox environment for monitoring the interaction between the OS and the malware.

CWSandbox operates by loading a kernel driver into Windows that hooks all exported

APIs to intercept the system calls performed by user-space programs. Subsequent sys-

tems, such as Anubis [8], were developed similarly. However, as has been shown for the

Sebek [34, 54] honeypot, in-guest kernel modules and user-space agents are vulnerable

to detection and tampering.

Cuckoo [14] is currently one of the most popular open-source dynamic malware anal-

ysis systems which uses the same approach as CWSandbox. Cuckoo supports a wide-

range of virtual machine monitors aka. hypervisors (VMMs); however, it doesn’t take

advantage of the VMM beyond isolation, as it relies on an in-guest agent to perform mon-

itoring. As no special protection is provided to the in-guest agent from the hypervisor,

stealth and tamper resistance cannot be guaranteed, thus potentially leading to incorrect

or incomplete analysis results.

Ether [24] made use of hardware virtualization extensions to monitor the execution of

malware within a virtual machine. Built on a modified version of Xen, Ether made use of

page-faults configured to trigger VMEXITs on specific code locations. Ether used this to

effectively trace system calls in the observed VM. At the time Ether was built, this feature

was used to trap all page-faults to the hypervisor where the address translation could be

performed in the shadow page tables. While Ether has made significant efforts to hide

these modifications, its effective stealth in practice has been called into question by Pek et

al. [89] who pointed out implementation issues that may still reveal the presence of Ether

to the guest OS.

A common problem facing the above mentioned approaches is the limitation of using

only system-call monitoring. While the technique has been shown to be applicable for in-

trusion detection [51], the approach loses its effectiveness when we consider how modern

malware increasingly resides directly in the kernel [52]. As kernel-mode malware (aka.

14

rootkits) only use system-calls in a limited form or not at all, these monitoring techniques

will be unable to accurately trace the execution of the malware after the initial infestation.

While alternative monitoring techniques have been proposed, such as tracking the heap

allocations of the guest operating system [95], these methods have not been implemented

for hardware virtualization in prior art.

Alternative monitoring techniques not based on emulation or hardware virtualization

have also been proposed, such as BareCloud [62]. Similarly to Ether, BareCloud pro-

poses to avoid the usage of in-guest agents to perform monitoring. Unlike Ether however,

BareCloud attempts to do the monitoring of the malware via hard-drive activity. While

BareCloud does avoid issues with malware that refuses to execute on virtualization hard-

ware, it relies on a networked hard-drive, which is detectable to the malware executing

in the system. As such a setup is highly unusual, it is reasonable to argue that it is an

easy sign of the monitoring environment malware could look for. Furthermore, with the

increasingly memory-only nature of modern malware [45], capturing only the hard-drive

activity severely limits the scope of data-collection.

Another alternative technique has been proposed by Zhang et al., named SPEC-

TRE [134]. Similar to virtualization, SPECTRE proposes to move the monitoring com-

ponent outside the guest system. Instead of utilizing virtualization, SPECTRE proposes

to use the System Management Mode (SMM) to perform the monitoring from. While ef-

fective, the SMM normally restricted to OEMs only, thus gaining access to this operation

mode in practice is problematic. We will further discuss the SMM in Section 5.4.

2.3 Monitoring via Hardware Virtualization

As we can see, both malware collection and malware analysis systems have experi-

mented with the use hardware virtualization as an underlying platform [24,120]. In parallel

to these systems, virtualization has been identified as a method to be used for various

other types of security systems as well [20]. As such, a significant body of work deals

15

with the problems inherent in using virtualization for security applications [42].

First, the problem with in-guest agents is their inherent exposure to the same execution

context they are to observe [34]. While the virtualization layer still provides some level of

isolation of the VM, the monitoring component is inherently at risk of tampering. External

monitoring approaches however face the semantic gap problem [43]. The problem can

be summarized as follows: while in-guest agents have direct access to the system Appli-

cation Binary Interface (ABI) in the form of system calls, external monitoring agents need

to reconstruct high-level state information of the guest OS by observing low-level hard-

ware information. For example, on modern systems the hypervisor interacts minimally

with the memory of the guest OS. For most VMMs, a VM is a region of physical memory

containing opaque data, rather than memory with virtual addresses or other high-level

data structures. It becomes the job of the external application to either reconstruct the

state of the high-level software system itself or leverage the guest OS to gain a high-level,

high-fidelity view. This is referred to as Virtual Machine Introspection (VMI).

In the following we examine and discuss related work that approach the core problem

from different angles: hardening in-guest agents vs. pure external monitoring.

2.3.1 In-band delivery

As in-guest agents have access to the native ABI, many standard information gathering

steps can be performed by utilizing the guest OS itself. However, this method is vulner-

able to tampering: the guest OS may have been modified to provide false information.

Nevertheless, the VMM could be leveraged to provide tamper resistance to the in-guest

monitor and/or critical kernel components. In the following we will discuss notable sys-

tems exploring such approaches.

To isolate the security application within the guest system, SIM [104] proposes to cre-

ate an additional address space. As the hypervisor controls the physical memory, the new

address space can be setup such that only the security application can access the guest’s

16

entire memory. With this the hypervisor can enforce access to the security application’s

address space to be restricted to the security application itself. Enforcing such address

space isolation is achieved by ensuring that the memory regions of the security applica-

tion aren’t mapped into the address space of the guest. An attempt therefore to access

the security application will lead to a page fault as the hardware will be unable to resolve

the virtual addresses belonging to the security application. To avoid virtual address con-

flicts, SIM marks the virtual address space that the security application occupies as used

within the guest’s address space. For the security application to be able to access the

guest’s memory, the guest’s memory regions is also mapped into the address space of

the security application.

Process implanting [47] proposed hijacking a process running within the guest from

the hypervisor. To provide stealth, the hypervisor does not create a new process within

the guest, but rather substitutes the image of an existing process with the image of the

program that is injected, a technique also known as process hollowing used by rootk-

its [126]. As a consequence, whenever the victim process is scheduled, the guest system

will actually execute the injected program instead of the original process. The injected

process can then access guest information using system calls and transfer the obtained

information to the hypervisor with the help of hypercalls.

The security of the approach is based on the assumption that the guest OS system is

trusted. To protect the implanted process against other malicious processes, its rights are

elevated to root and it is protected from kill commands. In addition, the hypervisor creates

a new physical memory region for the injected process at run-time. Since other process’

are unaware of this memory region and due to the fact that the implanted process is

injected into a randomly selected guest process, malicious process’ on the system neither

know which physical memory range the implanted process uses nor which process was

substituted. While this does not directly protect the injected process, it makes it more

difficult for an attacker to detect the implanted process.

17

The most significant drawback of process implanting is the restriction that the ap-

proach is only secure if the guest OS has not been compromised. One of the main

security reasons to make use of virtualization is to be able to protect security applications

in spite of the fact that the OS kernel is compromised. In fact, if the OS is trusted, there is

- from a security standpoint - no reason to resort to virtualization in the first place. Thus

the technique, is not particularly well-suited for the implementation of hypervisor-based

security applications.

X-TIER [117] tries to solve the security problems of process implanting by providing

hypervisor-based security applications the possibility to inject device drivers into a run-

ning VM. In contrast to an implanted process, the injected drivers are executed within

the guest’s kernel space. To protect the injected drivers during their execution, X-TIER

isolates the drivers within the guest system by employing two separate techniques. First,

to isolate a driver during its normal execution, X-TIER disables all interrupts within the

VM. As a result, the driver is executed atomically and cannot be accessed by other code

contained within the guest system. While this approach can protect the injected driver

during normal execution, the isolation will be broken if the driver invokes an external func-

tion. Thus, as the second technique, to circumvent this restriction, X-TIER intercepts all

external function calls that are conducted by the injected driver and temporarily removes

the driver from the guest system. Once invoking the external function on behalf of the

driver finishes, the driver is reinjected. Using this mechanism the injected driver is able

to call arbitrary kernel functions and use their results, while itself cannot be accessed by

the invoked functions. Since X-TIER provides its own loader code for kernel drivers, it

is capable of injecting any driver that was compiled against the target kernel, even if the

driver loading functions are hooked within the guest.

Due to its isolation mechanisms, X-TIER provides strong security guarantees. Com-

pared to process implanting the added security, however, also reduces the performance

of the mechanism. This is especially true if the injected driver makes use of many ex-

18

ternal function calls, since each external function call leads to at least two VM exists. In

addition, while X-TIER is able to isolate the injected component during external function

calls, it does not check the integrity of external functions before their execution. Thus, the

data gathered with X-TIER may not be trustworthy.

SYRINGE [19] tries to solve this problem by verifying the integrity of in-guest functions

before and during their execution. In particular, SYRINGE enables the hypervisor-based

security application to inject function calls into a guest system. Before an in-guest function

is invoked from the hypervisor, SYRINGE verifies the integrity of the function by compar-

ing the hash of the code page containing the function’s entry point against a white-list.

During execution, SYRINGE will repeat this process whenever the function leaves the

current page and starts executing from a different page. In addition, the system ensures

run-time control-flow integrity by verifying the targets of all call, ret, and indirect branch

instructions according to a control-flow policy. To provide protection against run-time mod-

ifications of stack and heap data, SYRINGE executes the injected function call atomically

(without interrupts) within the guest.

Since SYRINGE only injects function calls into a guest system, security applications

are isolated by the hypervisor and must not directly be protected by SYRINGE. Stealth

is thereby achieved by executing the injected function atomically within the guest system.

However, while SYRINGE ensures the integrity of the executed code, it cannot ensure

the integrity of the data that is used by the injected functions. Therefore an attacker can

still provide false information to the monitoring application, by performing for example

DKOM [17] attacks, which alter the state reported by the guest kernel without affecting

system stability. We further discuss the details of DKOM in Section 4.5.1.

2.3.2 Out-of-band delivery

In the following we will discuss systems which leverage purely out-of-band data collection

methods. As this method has formed the bases of our own prototypes, we provide an

19

extensive discussion on the topic to aid the reader in better understanding the design and

development challanges of such systems. Afterwards, we highlight the most significant

prior work in this direction.

2.3.2.1 Discussion

The out-of-band delivery approach uses semantic information that is obtained before the

data collection takes place, referred to as introspection. The type of semantic information

that is required to be delivered out-of-band requires at least information about the virtual

hardware of the guest. Constructing such hardware semantic information is relatively

simple because of the requirement of compatibility exposed upon the virtual hardware.

Nevertheless, differences between the physical and virtual hardware do exist, having a

direct impact upon scalability and stealth that have to be taken into consideration [41].

As with in-band delivery, the use of untrusted guest data-structures have been shown

to be problematic due to various attacks, such as DKOM and Direct Kernel Structure

Manipulation (DKSM) [6]. The core problem with both of these attacks is that the VMI

tool relies on in-guest information to bridge the semantic gap, without that data being

enforced by the hardware. An in-guest attacker is free to manipulate the use and layout

of kernel structures without the risk of causing the guest OS to crash. This problem has

recently been named the strong semantic gap problem [57]: given the potential of poi-

soned in-guest data, accurately reconstruct high-level state information from an external

perspective.

While hardware semantic information is important in almost any VMI approach, there

are some systems that try to exclusively make use of it. These have the advantage that

the architecture of the hardware will not change at run-time, leading to stronger tamper-

resistance. When relying on software semantics, this software can change at run-time,

even for malicious means. For example, a VMI component may be inspecting the system

call table, while a malicious entity creates a second system call table with malicious hooks

20

and patches the code to make use of this malicious table. If the VMI component only

inspects the system call table at the position known from software semantic information,

it will not catch such a malicious change. While this is a simple example that can easily

be remedied, it serves to illustrate that the software architecture can easily change at run-

time, while the hardware architecture cannot. If a VMI component inspects the interrupt

descriptor table register (IDTR) to determine where the interrupt descriptor table (IDT) is

located, it can be sure that the IDT is in that location as there is no way for a malicious

entity to change this behavior without crashing the system. This fact leads to increased

tamper resistance for hardware-based solution.

Additionally, such approaches benefit from being guest OS agnostic. That is, if a

component relies completely on the hardware semantic information, it can be sure that its

information is relevant regardless of the guest OS that is running in the VM. Any software

running in the guest must adhere to the hardware architecture, therefore the information

that is retrieved is relevant to all guest software that runs on the hardware.

On the other hand, approaches that exclusively make use of hardware semantic infor-

mation are limited in the scope of what they can inspect and understand. There are simply

some components within the guest OS that are independent of the hardware semantics.

For example, the process ID of a process is difficult to retrieve without software semantic

knowledge as a process ID is a construct of the OS and is completely independent of the

hardware.

Thus, when building out-of-band delivery VMI applications to inspect software sys-

tems, the semantic gap is a significant barrier. Out-of-band VMI systems require in-depth

knowledge of the inspected software system’s data structures and algorithms in order to

reliably reconstruct their state. The problem is further exacerbated by the fact that the

software system may be closed-source, thus require significant reverse-engineering ef-

fort to properly inspect. Even when such reverse engineering effort has been performed,

keeping the semantic information up-to-date and valid can be challenging.

21

2.3.2.2 Prominent prior work

ReVirt was one of the earliest VMM based security applications which has implemented

such an approach [35]. ReVirt’s primarily focus was on capturing hardware events to

be able to replay them later to reconstruct the state of the VM. ReVirt however had no

understanding of the context of these hardware events and the task was left to a human

analyst to inspect the state of the VM.

AntFarm [60] attempted to deduce contextual knowledge about the operating system

by fusing hardware events with hardware semantic information to track the execution of

running processes. This context can be deduced by the common use of the CR3 register

on the x86 architecture to implement protected memory mode: the CR3 register is used

by the operating system to hold the physical address to a process’ directory table base

(DTB) used for translating virtual memory addresses to physical addresses. As such,

the CR3 value uniquely identifies a process on the system. AntFarm has thus been suc-

cessful in tracking running processes; however, extracting higher level software semantic

information was left unresolved.

Srivastava et al. implemented a VMI-based firewall called VMwall [109]. VMwall cap-

tured network flows and, using the XenAccess library, correlated them with processes

running within a VM. VMwall accomplishes the correlation by extracting information from

data-structures of the guest’s Linux kernel. Dolan-Gavitt et al. [27] later noted that the

same functionality can be achieved by utilizing forensics tools (Volatility), to inspect the

guest kernel data-structures in conjunction with live introspection tools (XenAccess, Lib-

VMI). As both approaches rely on VM kernel data-structures, they are vulnerable to the

same kernel subversion attacks we discussed earlier.

Nitro [91] is another system that uses virtualization extensions to monitor system calls

within the VM. Nitro, similarly to Ether which we described earlier, also manipulates the

machine specific registers: by changing the SYSENTER EIP MSR and MSR SYSENTER CS

used during SYSENTER to cause an invalid value of 0 to be loaded into CS register. This

22

in effect causes a general protection fault leading to a VMEXIT. Similar techniques were

implemented for both interrupt-based and for SYSCALL based system-calls. The bene-

fit of Nitro’s approach over Ether is that the faults it triggers are significantly fewer then

Ether’s page faults, leading to better performance.

InSight bridges the semantic gap by deriving information about the kernel’s data struc-

tures from the source code and its debugging symbols. By parsing the source code, In-

Sight can identify how different data types are used. For example, when void* is used in

the debug symbols to describe a pointer, the true type of the pointer can be deduced from

how it is used in the source code, which may even be variable through casts and the like.

The framework uses this information to resolve symbols and build a graph of data types to

aid in understanding kernel memory. The graph is generated by using the public symbols

delivered with the binary code as the graph root. As there are still data types where such

”used-as” approach is not enough, InSight also provides a rule-engine to record expert

knowledge manually to enable the system to walk data structures like linked lists and

trees. For example, the linked-list data structure is usually embedded within other struc-

tures; however, the prev and next pointers do not point to beginning of the structure they

are embedded into and instead reference the next structure’s list->next pointer. With

the use of the rule-engine, the framework can automatically calculate the proper offsets

to enable the user to directly navigate through the kernels graph of data structures.

Automatic construction of expert knowledge for systems without source-code is of

entirely different nature. In such cases, knowledge have to be derived from additional

sources, like debug data, documentation and reverse engineering. For example for Win-

dows, access is only available to the documentation and debug data provided by Mi-

crosoft. When we look at the data structures exported by the debug data, many of the

structures lack public documentation as Microsoft considers them opaque. Even more

perplexing are the structures that are opaque and take on different meaning based on con-

text (such as unions) or are flat out obfuscated (like pointing to structures with void point-

23

ers and having non-descriptive names) to protect against reverse engineering [12, 32].

While such data structures and types are present in the Linux kernel as well, their use

can be derived from the source-code - a method unavailable for Windows.

Volatility [119], an open-source forensics memory analysis (FMA) framework is a col-

lection of such state-reconstruction algorithms obtained primarily by reverse engineering.

While designed for manual investigations of physical memory dumps, in combination with

LibVMI [76], a hypervisor agnostic abstraction library to access VM memory, it can be

used to inspect the memory contents of live VMs as well [27]. Among functions to enu-

merate a wide aspects of Windows and Linux internals, Volatility also showcases a set of

routines directly aimed at the detection of API hooking and DKOM attacks. Its Application

Program Interface (API) hook detection capability includes detecting hooks in the Import

Address table (IAT) and Export Address table (EAT) of processes by verifying that the

symbol contained in the tables point to memory locations of valid modules. Inline hooks

(aka. trampoline hooks) are detected by disassembling the symbols and checking for

PUSH/RET instruction sequences. It is worth noting, however, that inline hooks may well

be more complex and evade this detection scheme.

The detection of DKOM attacks and anti-forensics tricks [6] [50] still pose a signifi-

cant challenge however. Even if the algorithms used to gather the information are re-

implemented on the VMM-layer, the data they operate on may still be unreliable. For

example both Linux and Windows keep the list of running processes maintained in a cir-

cular linked-list. The head of the list is exported through a kernel symbol and process

enumeration is performed by simply looping through the list [102]. As this data structure

is a non-critical element of the kernel, not used for example in the scheduling of the pro-

cesses, it can be safely modified. If an entry is removed from the list, it will continue to

run, but will be invisible to tools that rely only on the linked-list [39].

Volatility’s detection of such hidden processes and threads uses the cross-view val-

idation method. Cross-view validation can - in certain scenarios - enable the detection

24

of DKOM techniques [18, 124]. The technique requires multiple views of the same in-

formation to detect discrepancies, such as a process being present in one list but not in

another. Cross-view validation may still prove unreliable when there are no discrepancies

to detect [102].

As an attempt to side-step this issue, signature based scanners were proposed to

directly locate data structures in memory, without the need to traverse potentially compro-

mised links. An example of such an approach is Volatility’s pooltag scanner implementa-

tion for Windows, which looks for strings (like ”Proc” or ”KDBG”) in the pooltag header, a

header that is automatically attached to structures when when they are allocated. How-

ever, the reliability of a signature directly depends on the signature being a critical compo-

nent of the structure itself. Pooltag signatures for example are non-critical and therefore

can be modified without affecting the functioning of the process using the structure they

describe. Finding signatures that are both critical components of the structure and also

uniquely identify the structure are hard to come by and remain an open issue [31] [73].

CXPInspector [128] builds exclusively on the use of EPT for execution tracing. As EPT

adds an additional layer of paging where translation between guest physical and machine

physical address takes place, any access violation within this layer will trigger a VMEXIT,

thus remaining transparent to the guest. By marking certain pages non-executable, CX-

Pinspector is able to monitor the execution of the VM. However, the use of EPT for execu-

tion tracing has been known to still add significant overhead to the execution of the VM,

mainly as a result of the granularity EPT can be set to trigger violations on.

SPIDER [23] evaluated the use of injecting debugging breakpoints to enable stealthy

debugging of processes within virtual machines using the KVM hypervisor. However,

starting a malware sample with SPIDER still requires either manual action or an in-guest

agent, which either prohibits scalability or hinders the stealth capability of the system.

Similarly, determining where to place breakpoints with SPIDER is a manual process, as

would normally be done during debugging.

25

3 Malware collection

Automated malware collection systems, aka. honeypots, have been a central tool over the

last decade to provide security analyst with malware binaries, as discussed in Section 2.1.

Honeypots have been traditionally divided into two categories: low-interaction, emulated

services (LIH); and high-interaction, full systems (HIH). For the evaluation of hardware

virtualization, our target honeypot type is the HIH.

The overarching goal of any type honeypot is the capture of binaries, which can be

considered the primary requirement. Thus, in this section our goal is to evaluate how

hardware virtualization can aid in constructing a system that achievies the primary re-

quirement while satisfying our four core objectives.

In this section we first list the challenges facing in achieving each of our core objec-

tives. We follow by presenting the design and implementation of our first prototype that

achieves the primary requirement while meeting the core objectives. We follow by per-

forming extensive experiments to highlight how the system operates under realistic con-

ditions. Based on these experiments we identify where our system can be improved to

better satisfy the core requirements and the challenges that one faces when constructing

such improved systems. We provide the design and implementation of our improved pro-

totype that solves these challenges, and we perform additional experiments under realistic

conditions. We conclude with our summary evaluation on how hardware virtualization can

aid in constructing such systems while meeting the core objectives.

3.1 Challenges

There are a number of challenges one has to consider when constructing virtualization

based honeypots. Foremost, the four core requirements have to be met, which has thus

far not been shown in practice. While in our discussion of prior work in Section 2.1 we

highlighted systems that achieved some of the core objectives, thus far no system has

26

been developed that satisfies all four. The reasons for this are summarized in the follow-

ing.

(O1) Scalability: While running multiple virtual machines on the same hardware directly

offers improved scalability as compared to bare metal systems, there still exists a set

of hardware requirement that needs to be met for each virtual machine. The main

challenge in this regard are disk space and memory, for which the requirements

grow linearly as we increase the number of virtual machines. As the primary goal

of the system is to obtain malware binaries, the system has to take into considera-

tion the situation when the hardware requirements cannot be met to use hardware

virtualization.

(O2) Stealth: The use of in-guest data-collection techniques have been shown to be vul-

nerable to detection, even when such collection is implemented in the kernel. Thus,

the primary challenge to meet this objective is developing a data-collection method

that operates exclusively out-of-band. Additionally, in prior work such out-of-band

approaches required significant changes to be made to the hypervisor, which may

introduce discrepancies in the behavior of the system which may reveal the analysis

environment. For effective stealth the underlying hypervisor should not have to be

modified such that it may present differences as compared to when it is deployed

under normal circumstances.

(03) Fidelity: Modern malware notoriously hides aspects of its operations by modifying

the state that the operating system reports to standard tools. Thus, the out-of-band

collection method has to obtain state information such that the fidelity of the data is

preserved in light of such malicious modifications.

(O4) Isolation: The malware collection system has to isolate the incoming attack traffic

from each other so that data attribution can be performed more accurately. While

27

virtualization and out-of-band monitoring provides a base-line of isolation, the virtual

honeypots also have to be kept separate on the network as well.

Other challenges facing the development and operations of honeypots include decid-

ing the network placement, choosing and configuring vulnerable services, avoiding the

attacker using the honeypot to infect others and providing auxiliary information on the

captured malware. While these challenges are important aspects of honeypots, we con-

sider these mostly out-of-scope.

3.2 System Design

Figure 1: Malware collection sys-
tem implemented on Xen

In our prototype we opted to for a combined hon-

eypot archicture in which both low- and high-

interaction honeypots are used, commonly referred

to as hybrid honeypots. This design choice has

been warranted by our primary goal to obtain bina-

ries, even when hardware resources are insufficient

for the use of hardware virtualization. In such cases

the LIH can be used as a fall-back mechanism to

provide at least some interaction to the attacker. An

overview of the system can be seen in Figure 1.

The incoming malware connections are routed

using Honeybrid [11], which decides which type of

honeypot should handle it to based on the current

utilization of the system. The LIH has been a stan-

dard emulation based system called Dionaea. The

choice of Dionaea has been made based on the

variety of services Dionaea is able to emulate, en-

abling the capture of a high variety of malware. The HIH has been developed with the use

28

of hardware virtualization and its implementation details are discussed in the following.

3.2.1 Hardware virtualization based subsystem

During our implementation process we experimented with two open-source hypervisors,

Xen [55] and KVM [68]. While our system was operational on both platforms, Xen was

chosen as no custom patching of the hypervisor was required. Xen is a bare-metal hyper-

visor running at the lowest and most privileged mode of the CPU. In such a system, Xen

presides over multiple operating systems, known as domains, with the Xen management

domain (dom0) granted privileged access.

In order to gain access to the guest memory, we used the open-source library Lib-

VMI [76], which is an introspection library written in C that builds upon low-level function-

ality provided by the hypervisor itself. Through this API we gain visibility into many aspects

of a virtual machine, including CPU state and guest memory. Running in userspace within

dom0, a program utilizing LibVMI is isolated from the monitored guest and therefore in-

creasingly protected from tampering by the software inside the VM. Our prototype system

passively monitors the sandbox, thus it further minimizes the potential of detection.

Command Description Is scanner?
ssdt Print the Native and GDI System Service Descriptor Tables. No
ldrmodules Cross-reference memory mapped files with the 3 PEB DLL lists. No
apihooks Detect IAT, EAT, and Inline hooks in process or kernel memory. No
idt Dump the Interrupt Descriptor Table and check for inline API hooks. No
gdt Dump the Global Descriptor Table. No
callbacks Print kernel callbacks of various types. No
psscan Scan memory for EPROCESS objects. Yes
modscan Scan memory for LDR DATA TABLE ENTRY objects. Yes
driverscan Scan memory for DRIVER OBJECT objects. Yes
filescan Scan memory for FILE OBJECT objects. Yes
mutantscan Scan memory for KMUTANT objects. Yes
thrdscan Scan memory for ETHREAD objects. Yes
sockscan Scan memory for socket objects. Yes
svcscan Scan the Service Control Manager for information on Windows services. Yes

Table 1: Volatility tests utilized.

With access to the low-level virtual hardware state, Volatility is used for high-level

state reconstruction. Volatility is the most popular open source memory forensics tool,

29

incorporating templates for Windows and Linux, and several plugins such as seen in Table

1. While some of the Volatility plugins rely upon the guest kernel entry-points (such as the

linked list of running processes) to perform state-reconstruction, a set of Scanner plugins

are also available that bypass the standard entry-points entirely. This analysis method

allows detection of hidden or otherwise disguised kernel data.

The Scanner plugins operate by fingerprinting each byte in the inspected VM’s mem-

ory as a candidate for the target datastructure, thus require a continuous sweep of the

entire memory of the guest. The fingerprint builds on the observation that on Windows

datastructures allocated on the kernel heap are appended a so-collaed pool header,

shown in Listing 1. This header allows Windows to keep track of structures with a size

less then 4096 bytes, the minimum size that can be addressed using memory paging.

Windows pools such small structures onto as few pages as possible for efficient memory

management. This pool header consequently identifies the type and size of the structure

that follows. While the type description is not binding, it provides an alternate method to

obtain a view into the kernel heap, as opposed to following standard kernel datastructures

known to be modified by some rootkits.

The sandbox VM was running Windows XP SP2 with 128MB RAM as a VM. Paging

within Windows was turned off to maximize the access to the state of the VM without hav-

ing to take into consideration paged-out memory. Automated system processes were also

disabled, such as automatic updates, automatic defragmentation and screensavers. We

installed no additional software in the HIH and therefore only the default TCP ports were

open: 135, 139 and 445. Since LibVMI and Volatility supports all versions of Windows,

our prototype could also operate on a wide-range of HIHs. So far we have only experi-

mented with Windows XP SP2 as it had been the standard platform for other introspection

based Honeypots [24,30].

The memory scans were initiated both when a time-out was reached which we set at

10 minutes, or in case the compromised sandbox attempted to initiate a network connec-

30

tion to a third-party IP. As we considered unblocked propagation of malware unacceptable,

all such attempts immediately resulted in the sandbox being suspended for analyses and

then reverted. We were able to judge the connection to be malicious by ensuring that the

sandbox does not initiate any network connections when left alone and idle, thus the only

scenario for it initiating connections is if it is caused by malware.

3.2.2 Network setup and fall-back system

One of our core objectives is to provide a separation between intrusions on the HIH so

that the memory footprint we obtain can be assigned to a single intrusion session. This

isolation requirement has been extended to control the outgoing connection attempts ini-

tiated by HIH as well to minimize the security risk an infection poses to other entities.

Figure 2 shows the layout of our network setup. In our prototype we based our network

setup on the open-source Honeybrid [11] system, which is a honeynet coordinator de-

signed to reduce the load on HIHs by utilizing low-interaction honeypots (LIH) as filters

on the incoming traffic. Honeybrid also provides fine-grained control over outgoing con-

nections from the honeynet, which can be easily extended by creating additional decision

modules for Honeybrid, a feature we took full advantage of.

The Dionaea low-interaction honeypot [25] has been used as our back-up system

and filter on incoming traffic. A custom Honeybrid module has been created to monitor

Dionaea’s actions via chat messages to prevent repeated captures from the same IP. Also,

utilizing the chat messages Honeybrid can filter out IPs that have previously dropped a

payload on the LIH. Furthermore, network connections are only transferred to the HIH if

the connection passed the TCP handshake stage, providing additional filtering in case an

attacker is sending a syn-flood.

The control module created for Honeybrid redirects outgoing DNS queries to DNSchef

[26] for logging purposes and only allows outgoing connections back to the attacker. All

other connection attempts result in Honeybrid pausing the HIH, initiating a Volatility scan

31

of the VM and reverting it to the origin state. When Honeybrid observes no traffic to the

HIH from the attacker for two minutes, the same actions are taken: initiating Volatility

scans and reverting the VM.

To avoid a single attacker taking over our HIH for an extended period of time, we

placed an additional timer on the attack sessions which sets an absolute allowed time-

frame of 10 minutes. After 10 minutes the attacker is redirected to the LIH and the HIH

is scanned for artifacts and reverted to the clean state. We chose 10 minutes as a maxi-

mum limit because in our observation with Dionaea infections occurred within a minute of

the connection being established while others reported an average of three minutes [66].

However, malware may choose to wait longer as a detection avoidance technique.

Figure 2: Overview of the different communication paths within the honeypot. Only one
connection is allowed to the HIH at any given time.

3.2.3 Fidelity and the path to Scalability

To perform anomaly detection in the output of Volatility’s various plugins, we created VMI-

Honeymon (honeypot monitor), to execute Volatility and parse the results in parallel. In

our setup, VMI-Honeymon resides in a separate domain from Honeybrid, listening to com-

mands through a TCP socket. The anomaly detector compares the Volatility results ob-

tained from the live HIH to results that were obtained from the clean state of the HIH.

32

By performing a differential analysis akin to running diff, VMI-Honeymon can effectively

flag all deviations observed. This method has been effective in detecting a wide range of

changes in the HIH during infections.

One of the scan plugins of Volatility was of particular interest to us in the context of

malware collection, as it performs a scan for FILE OBJECTs on the kernel heap. Us-

ing the results obtained from this scan, VMI-Honeymon effectively obtains a list of files

that are likely candidates for malware binaries so that we don’t have to scan the entire

filesystem for changed files later. To extract these files, we utilize Libguestfs [74], an

open source library developed by RedHat intended for analysis and manipulation of guest

filesystems. Libguestfs operates by launching a small Linux appliance inside Qemu and

attaches to the filesystem of the running VM. In our setup Libguestfs attaches to the guest

filesystem in read-only mode to avoid creating discrepancies in the filesystem. As filescan

provides a very rich set of information, some of the files that were not actually changed

but have simply been opened for reading by processes. To filter out these false-positives,

VMI-Honeymon compares the checksum of the candidate files in the running VM to the

origin state and only extracts new files or files with changed checksums.

The extracted files are further checked to determine if the file is a binary using the

file command. When the file created has a proper PE header it also gets submitted to

VirusTotal (VT) [115] for further analysis. VirusTotal is an online resource which provides

an API for automatically scanning samples with a set of popular antivirus software. We

used VirusTotal to estimate the number of binaries containing malware. As VirusTotal

uses many antivirus products to scan the submitted samples, we can effectively determine

whether the sample is classified or unknown.

To automate back-up and restore procedures, VMI-Honeymon takes advantage of

functionality provided by LibVirt [75] to automatically save the entire memory of the HIH

and revert it when required. By saving the entire memory and filesystem of the VM in an

initial ”snapshot” operation, VMI-Honeymon can quickly revert the HIH, without requiring a

33

complete reboot of the VM. To stream-line the process of filesystem restoration, we utilize

the qcow2 (Qemu copy-on-write) format through the Xen blktap2 driver. Qcow2 works by

utilizing a base-image of the filesystem and a copy-on-write image that keeps only the

changes that were made. Since no changes are written to the base-image during oper-

ations on the qcow2 image, the two main advantages are its small storage requirement

and the ability to keep infections in a contained environment. Furthermore, this technique

also opens the door for effective scalability, as multiple copy-on-write disks could utilize

the same backend disk simultaneously.

3.3 Initial Experiments

Once the system has been implemented with the above outlined design, our goal was

to determine whether the system is capable of capturing binaries, which is the primary

goal of the system. For this, the system has been exposed on the public Internet without

firewall or IDS systems filtering the incoming traffic. Furthermore, we were interested in

determining how the system behaves and the types of auxiliary information it generates

during regular operations.

3.3.1 Performance

Figure 3: Benchmarks of Volatility scans

During regular operation of VMI-Honeymon, Volatility scans and baseline comparison

took an average of 30 seconds; reverting the VM to a clean state took an average of

25 seconds. We performed further benchmarks of our system with varying VM memory

34

sizes for which the results can be seen in Figure 4. The hardware specs of our system

were as follows: second generation Intel i7-2600 quad-core CPU with Intel VT-x and VT-d,

Intel DQ67SW motherboard, 16GB DDR3 1333Mhz RAM and two 1.5TB SATA 6.0Gb/s

5900RPM hard-drives using Intel Rapid Storage Technology in RAID 1.

The snapshot operation consists of creating a memory backup, a filesystem backup

and running initial Volatility scans on the VM. Libguestfs checksum creation of the entire

filesystem is a separate step in the snapshot operation not affected by the memory size

of the VM and which takes an additional 5-6 minutes to finish (not shown on Figure 4).

From our benchmarks it is clear that the memory scanning plugins of Volatility take longer

with growing memory size, seen in Figure 3. Nevertheless, even with 2GB of RAM the

majority of the scans finished in about a minute.

Figure 4: Benchmarks showing the setup times of VMI-Honeymon. Snapshot operations
are performed only once, while Check and Revert are performed at the end of each ses-
sion.

3.3.2 Testing with Metasploit

To verify that our system is able to detect intrusions, we exploited the HIH using Metas-

ploit’s ms08 067 netapi [93] remote code execution exploit for the SMB stack, an exploit

also used by the Conficker malware [81]. This exploit was chosen as Conficker infections

had been observed on our LIH with Dionaea on multiple occasions. The anomaly de-

tection did indeed pick up the changes in the memory, particularly the presence of our

35

remote shell, cmd.exe and the presence of a new TCP socket. This intrusion resulted

in a total of 127 changes in memory, predominantly new threads spawning according to

thrdscan, various dll’s being loaded into memory according to ldrmodules and those dll’s

being opened for reading according to filescan.

We conducted an additional test where we used Metasploit’s auxiliary smb version

scan to fingerprint the HIH and ran our anomaly detection tool to see if a simple finger-

print operation results in detectable changes. Indeed, running smb version resulted in a

set of changes in filescan and ldrmodules in relation to the kernel modules ”spools” and

”browser”. While the number of changes was small, six changes in the output of files-

can and a single change in ldrmodules, this test illustrates the sensitivity of our anomaly

detector.

3.3.3 Rootkits

To further test our system we obtained recent samples from contagioexchange [86] of

the ”Sinowal Mebroot Torpig” family and manually infected the HIH with the trojan 1. This

malware was chosen as it is known for disabling itself when it detects a virtualized environ-

ment [77]. We observed significant changes all around the memory footprint of the VM,

most notably, changes in the Interrupt Descriptor Table (IDT) and the Global Descriptor

Table (GDT). A total number of 78 changes were detected, including changes with pss-

can, mutantscan, filescan and ldrmodules. The only filesystem change occurred during

execution of the malicious binary we placed in the HIH. No outgoing connection attempts

were detected during this infection. Table 2 shows a snippet of the memory changes

detected by VMI-Honeymon.

Similar results were obtained while infecting the HIH with a TDL4 sample (md5sum

1ca0ca80bf70ca999be809edc2606ac0). This malware was also chosen for the known

behaviour of disabling itself when a virtualized environment is detected [38]. The infection

triggered detection by modifying the IDT and GDT kernel tables and by changing the

36

output of mutantscan, filescan and ldrmodules.

Scan Result

gdt values ”Sel Base Limit Type DPL Gr Pr”
gdt ”0x38 0x0 0xfff Data RW Ac 3 By P” is missing/changed!
gdt ”0x40 0x400 0xffff Data RW 3 By P” is missing/changed!
gdt ”0x48 0x0 0x0 Reserved 0 By Np” is missing/changed!
gdt New element: ”0x38 0x7ffdf000 0xfff Data RW Ac 3 By P”
gdt New element: ”0x40 0x400 0xffff Data RW Ac 3 By P”
gdt New element: ”0x48 0x80d44000 0x177 LDT 0 By P”
idt values ”Index Selector Function Value [Details]”
idt ”21 8 - 0x0” is missing/changed!
idt New element: ”21 C7 - 0x0”

Table 2: Sinowal Mebroot Torpig detection (snippet).

3.3.4 Live sessions

To expose our system to malicious traffic, it was placed on a University network with the

University firewall configured to allow all incoming and outgoing connections. In a period

of two weeks we recorded 1,158,477 TCP and 467,173 UDP connections to our honeypot

setup.

The HIH was exposed to 6,335 connections during this time in 1,980 sessions. VMI-

Honeymon extracted a total of 886 unique binaries out of which 236 were verified as being

malicious by VirusTotal. Dionaea in the same time captured 1,411 binaries out of which

431 were verified by VirusTotal.

One of the worms that has triggered the vast majority of Dionaea captures on our

LIH is Conficker. Similarly, we have observed several Conficker infections on our HIH,

constituting 14% of the total number of unique captures and 53% of all captures that

had a detection with VirusTotal. We observed several variants of Conficker trying to

connect to the default gateway on port 445, possibly trying to propagate on the local

network (LAN), and also trying to initiate connections to unknown web-servers. A detec-

tion and capture snippet of Conficker can be seen in Table 3. Another subset of sam-

37

ples, an infection we have not observed previously with Dionaea, triggered detection

only with McAfee-GW-Edition according to VirusTotal with a detection named ”Heuris-

tic.BehavesLike.Exploit.CodeExec.L”. Figure 5 shows details of unique binary captures

with VirusTotal detection, both from the LIH and HIH.

Figure 5: Unique binary captures with VirusTotal detection

In Figure 6 a breakdown of samples attempting to establish a connection to an IP other

than the attacker can be seen. This data show us that sessions which resulted in the HIH

trying to connect out had a higher number of binary captures with 98% of the captures

being verified by VirusTotal. On the other hand, the majority of the sessions with no

outgoing connection attempts resulted in no modification to the filesystem. Furthermore,

only 26% of the files extracted during these sessions were verified by VirusTotal. As

such, it is reasonable to assert that an outgoing connection attempt is a better indicator

of a successful exploit but it should not be relied upon as the sole indicator.

The results were further broken down to show how many of these sessions resulted

in a binary capture attempt and how many of these binaries were verified by VirusTotal.

While the total number of sessions that resulted in the HIH trying to connect outside

was only 15%, 44% of unique binaries that had at least one VirusTotal detection were

extracted or observed during these sessions. Nevertheless, 42% of the time the captures

38

extracted during these sessions had no VirusTotal detection. It is reasonable to assert

that the unclassified captures are malware binaries as yet unidentified by the 42 anti-virus

vendors.

An estimated 45% of the sessions were scans or other benign connections as they

resulted in fewer than 20 changes in the memory analysis results. While the sheer num-

ber of changes is not a reliable metric, we based our estimate on the observations from

the manual scan with Metasploit and the sessions for which we observed either an out-

going connection and/or extracted a binary with a VirusTotal detection. During our tests

with Metasploit, only 7 changes were observed, suggesting a relatively low number of

changes for such interactions. Verified exploit sessions had a minimum of 62 changes,

a maximum of 962 and an average of 339 with a standard deviation of 313, thus we find

this a reasonable metric to identify such connections.

Action Result

sockscan values ”Offset PID Port Proto Address Create Time”
sockscan New element: ”0x00a6e7a0 984 1039 6 TCP 0.0.0.0 2012-04-10 04:10:37”
sockscan New element: ”0x01085e98 984 1032 17 UDP 127.0.0.1 2012-04-10 04:09:48”
sockscan New element: ”0x0109ae98 984 7054 6 TCP 0.0.0.0 2012-04-10 04:10:20”
sockscan New element: ”0x010c1b20 984 1038 6 TCP 0.0.0.0 2012-04-10 04:10:34”
sockscan New element: ”0x010d8480 1056 1037 17 UDP 0.0.0.0 2012-04-10 04:10:34”
sockscan New element: ”0x010f2780 984 1036 6 TCP 0.0.0.0 2012-04-10 04:10:34”
sockscan New element: ”0x04ca5a68 984 1041 6 TCP 0.0.0.0 2012-04-10 04:10:41”
filescan values ”Phys.Addr. Obj Type #Ptr #Hnd Access Name”
filescan New element: ”0x010c7120 0x80e94ad0 1 0 R–r-d /WINDOWS/system32/fmrmj.dll”
CAPTURE ”/WINDOWS/system32/fmrmj.dll”

Table 3: Conficker infection (snippet).

3.4 Improving Scalability

With our initial experiments successful, we turned our attention to the four core objectives.

Foremost, in our initial experiments only a single HIH was utilized either though the system

has hardware resources available to run multiple. Thus, our next prototype focused on

improving scalability by enabling the concurrent use of multiple HIHs.

As we have described in our initial experiments, copy-on-write disk enabled us to

39

Fi
gu

re
6:

H
on

ey
po

ts
ta

tis
tic

s.
N

ot
e:

A
C

on
ne

ct
io

n
A

tte
m

pt
is

de
fin

ed
as

an
y

at
te

m
pt

m
ad

e
by

th
e

H
IH

to
co

nn
ec

tt
o

an
IP

ot
he

rt
ha

n
th

e
at

ta
ck

er
’s

IP
.A

S
es

si
on

is
de

fin
ed

as
al

li
nt

er
ac

tio
ns

w
ith

an
at

ta
ck

er
.

40

rapidly revert the HIH environment. This technique also enables us to deploy multiple

clone VMs in parallel; nevertheless, to truly maximizing the number of instances that can

run in parallel the memory footprint of these VMs need to be taken into account as well. To

explore this aspect of hardware virtualization based systems, we enhanced our prototype

system to reduce the hardware cost of running nearly identical VMs. By effectively being

able to deploy memory sharing between virtual machines, our system further improved

the scalability of malware collection using the high-fidelity HIHs. As we developed this

prototype, we discovered additional challenges such a setup needs to address: trans-

parently perform Network Address Translation (NAT) on incoming and outgoing network

traffic using virtual machines that share MAC and IP addresses.

3.4.1 Memory sharing

To achieve dense HIH deployment while avoiding the linear memory requirements we

take advantage of Xen’s native memory sharing subsystem. Memory sharing enables the

creation of nearly identical clones that transparently share the memory pages that have

not changed during HIH execution. The system is designed so that the origin (parent)

VM is paused, and all clones created initially point to the parent’s static memory. When

a clone writes to memory, Xen performs a copy-on-write (CoW) routine and duplicates

the memory page for the clone, providing an optimized use of the overall memory of the

physical host.

Recent developments of the memory sharing subsystem enables the creation of nearly

identical clones without requiring modifications to Xen itself. While the subsystem is capa-

ble of carrying out Potemkin-style cloning of VMs, much of the toolstack for performing this

has been kept proprietary and thus unavailable to the general user. Fortunately, cloning

can also be achieved by performing the standard snapshot-and-restore routine with the

XenLight library and de-duplicating the memory pages of the clone afterwards. While the

approach is slower then the flash-cloning would likely be, it is sufficient for evaluating the

41

nature of several HIHs in a memory sharing setup.

A key aspect in performing the XenLight (XL) snapshot-restore routine is that the snap-

shot operation is performed only once when a VM is being designated as a honeypot

origin. This snapshot operation also encompasses the scanning of the VM’s memory

with Volatility and performing a full filesystem fingerprinting with LibGuestFS, so that later

infections can be correlated to a known clean-state of the honeypot. The domain config-

uration is dynamically updated during cloning to change some metainformation about the

VMs configuration, such as disk path and domain name, which allows the standard Xen

toolstack to create the clone domains.

3.4.2 Clone-routing

As the combination of CoW RAM and filesystem enables the creation of identical clones,

from a networking perspective the identical clones pose a new challenge: the configura-

tion of each network interface will also remain identical. This effectively means that the

clones will share both the MAC and IP address of the original VM, thus placing these

clones on the same network bridge leads to MAC and IP collisions. This collision rep-

resents a roadblock to the standard Linux IP routing stack as the connections could get

mangled and rejected. Both Potemkin and SnowFlock solve the problem of clone-routing

by performing post-cloning IP reconfiguration of the VMs. However, at this we had to avoid

performing such reconfiguration as it would have required an in-guest. Furthermore, the

reconfiguration inadvertently would change the initial state of the memory in the clone,

leading to noisy analysis results when comparing memory states between the clone and

its origin. This ’noise’ is caused by the process of unpausing the VM to alter settings,

which allows all processes to resume execution, subsequently causing potentially sub-

stantial deviation from the original memory state.

To ensure the creation of truly identical clones and enable pure comparison between

a clone and the origin, we retain the MAC and IP of the original VM for each clone. To

42

do so, each clone is placed upon a separate network bridge to provide isolation for the

MAC of the clone and avoid a collision. As seen in Figure 7, the clone’s bridge is also

attached to the VM that runs Honeybrid. This solution enables us to avoid collisions on

the bridge, but requires custom routing to be setup on the Honeybrid VM that can identify

clones based on the network interface they are attached to instead of their (identical) IP

addresses.

Figure 7: Clone routing layout - externally initiated.

Figure 8: Clone routing layout - internally initiated.

43

In order to provide transparent connection switching between the LIH and an HIH,

Honeybrid acts as a man-in-the-middle. Using iptables, each incoming connection in the

Honeybrid VM is DNATed to the LIH and then queued to be processed by Honeybrid.

Each TCP connection performs the TCP handshake with the LIH, and if the connection

sends any additional packets, Honeybrid evaluates if the connection should be switched to

an HIH. The evaluation is performed in conjunction with VMI-Honeymon where Honeybrid

asks for a random available clone from VMI-Honeymon through an SSH tunnel. When

there is one available, VMI-Honeymon responds with the clone’s name and Honeybrid

looks up the clone’s interface from the pre-defined configuration file. If VMI-Honeymon

reports that all HIHs are taken, the attacker’s IP is pinned to be able to only interact

with Dionaea. When the connection is switched to an HIH, Honeybrid replays the TCP

handshake with the HIH. The incoming packets bound to the LIH thereafter are copied

and updated to be directed to the clone and transmitted through a raw socket fixed to the

clone’s network interface. The use of raw sockets forces the incoming packets to egress

on the proper bridge. Packets in transit back from the HIH are also copied updated on-

the-fly to contain the IP of the LIH, thus allowing the standard Linux routing tools to take

the packet form here and route it normally upstream.

For connections that are initiated from a clone, which happens for example when an

exploit performs a reverse TCP connection, Honeybrid must be aware to route incom-

ing packets for that connection back to the clone that initiated the connection. We use

additional routing tables to specify which interface each clone is bound to and by using

iptables marks and ip rules we can direct incoming reply packets to specific routing tables

which in effect lead to specific clones, shown in Figure 8. We utilize Honeybrid to set the

iptables mark on the reply packets by looking up Honeybrid’s internal NAT table to identify

the original source of the connection.

44

3.5 Final Experiments

With the improved scalability available to us by utilizing CoW-memory as well as CoW-

disk, we further evaluated our system’s performance and effectiveness. Several tests

have been conducted which focused on the scalability of the memory sharing subsystem

when used with Windows XP SP2 x86, Windows XP SP3 x86, and Windows 7 SP1 x86

clones. The experiments were conducted on a single server with the following hardware

specs: second generation Intel i7-2600 quad-core CPU, Intel DQ67SW motherboard and

16GB DDR3 1333Mhz RAM. In our tests the Windows systems were running with the

minimum recommended memory, which is 128MB RAM for Windows XP x86, and 1GB

RAM for Windows 7 SP1 x86.

3.5.1 Idle clones

An important aspect of our intrusion detection approach and of effective memory sharing

is to limit the memory changes that are not related to an incoming attack. While in Win-

dows XP the number of background processes that generate unrelated memory changes

are limited to a handful of services (automatic updates, NTP, background disk defrag-

mentation and background auto-layout), in Windows 7 the number of such services have

increased significantly. The effect of these background services on Windows 7 is signif-

icant as even within two minutes the amount of shared memory decreases below 25%,

effectively requiring over 750MB RAM to be allocated to the clone. At the same time, the

clone itself reported only using 26% of its available memory, therefore the allocated CoW

memory pages had only short-lived purposes.

By disabling background services which required the allocation of unnecessary re-

sources and polluted our Volatility scans, we were able the minimize the resources allo-

cated to idle clones. The disabled Windows 7 services include prefetch, superfetch, BITS,

RAC, indexing, offline files and font cache. Figure 9 shows the resulting memory sharing

45

state of the clones when idle, in terms of shared memory and Figure 10 in terms of addi-

tional RAM allocated to the Windows 7 SP1 clones. It is important to note that disabling

services in the HIH will inevitably impact the attack surface of the HIH, as these services

may contain vulnerabilities that could be looked for and/or exploited by the attacker. Since

the services we disabled were not listening for incoming connections on the network we

deemed their absence to be a reasonable trade-off from a network intrusion perspective.

In another scenarios one may opt to leave all services running and trade the benefits of

memory saving achieved via CoW to improved fidelity.

Figure 9: Clone shared memory when system is idle.

Figure 10: CoW RAM allocated when system is idle.

46

3.5.2 SMB and RDP

The following tests were targeting open services in our clones, namely the standard SMB

and Remote Desktop services as both of these services have known vulnerabilities. The

RDP sessions had significant impact on the RAM allocated to both the Windows XP and

Windows 7 clones, reducing the amount of shared memory to 25% in case of the Windows

XP clone and 50% for the Windows 7 clone, as seen in Figure 11. In terms of actual RAM

allocation, the Windows 7 clone’s 50% memory allocation translates to allocating 500MB

RAM for the clone, while the Windows XP clone at 75% required 96MB RAM.

Figure 11: Clone shared memory after RDP connection.

Figure 12: Clone shared memory after SMB exploitation.

The SMB tests were only conducted on Windows XP clones as Windows 7 SP1’s

SMB stack has no publicly available exploit. We used a manual Metasploit exploit ses-

sion (ms08 067 netapi) to benchmark the effect on the Windows XP clone when used

47

with a meterpreter payload that performs a reverse TCP callback. This exploit was cho-

sen because Conficker uses the same vulnerabilities, which has been observed many

times during our live tests. Figure 12 shows the result of the benchmark compared to

a live Conficker infection. Only the first 60 seconds were benchmarked since the Con-

ficker infection performed a connection attempt to a third party at that point, triggering our

pause-scan-revert operation with VMI-Honeymon. The Windows XP clones retained 25%

of their memory in a shared state, which translates to saving 32MB of RAM.

3.5.3 Live sessions

Our experiments were conducted using multiple HIH back-ends drawn from a pool of

clones consisting of five Windows XP SP3 x86 and five Windows 7 SP1 x86 VMs. Each

Windows VM was configured with the firewall, automatic updates, time synchronization

and memory paging turned off and remote desktop enabled. Windows 7 had additional

adjustments as described previously in Section 3.5.1.

For the live captures we utilized a single IP on a university network with all firewall

ports open. Over two weeks of activity, we recorded a total of 52761 connections out

of which 6207 were forwarded to an HIH. Currently we forward any incoming connection

that passes the TCP handshake to an HIH (if one is available), regardless of whether the

HIH is actually listening on the port the attack is targeting. In this way, 1466 forwarded

connections never actually established real communication with the HIHs, because these

connections targeted ports that were closed (MsSQL, MySQL, SSH, HTTP, VNC).

For the live sessions, one aspect we were interested in was the concurrency of active

clones and the amount of memory savings achieved due to CoW RAM. Figure 13 and

Figure 14 shows the breakdown of the concurrency that occurred in our system. Figure 15

and 16 show the distribution of the memory remaining shared at the end of the clones’ life

cycle.

While VMI-Honeymon is configurable to scan the clones periodically during their life-

48

Figure 13: Clone activity by number of
occurrences.

Figure 14: Clone activity by time spent in
each state.

Figure 15: Shared memory distribution of
Windows XP SP3.

Figure 16: Shared memory distribution of
Windows 7 SP1.

49

span, we decided to limit such scans to a single instance which happens when the clone

reaches its maximum allowed life-span or when a network event is detected. The maxi-

mum life-span was set at two minutes, which is cut short if the clone initiates a connection

to an IP other than the attacker’s. The highest concurrency of active clones was observed

as seven, therefore our pool of ten clones was never depleted. The HIHs were actively

handling incoming attack traffic 41% of the time during our experiment.

By using the information gathered during these sessions we calculate the projected

memory savings when running multiple clones concurrently, shown in Figure 15 and Fig-

ure 16. From these projections it is clear that the savings are more significant when the

base memory of the HIH is large, as in the case of Windows 7 SP1, allowing for a larger

percentage of the overall memory to remain shared. We estimate that we would be able

to run 40 Windows 7 SP1 clones concurrently and not run out of memory even if all forty

clones were three standard deviations above the observed average memory allocation

with our 16GB RAM limitation (this would still use only 13.34GB RAM out of the available

16GB). Similarly, we would be able to run 140 Windows XP SP3 clones concurrently and

not run out of memory which would allocate 14.6GB RAM assuming all clones are three

standard deviations above the observed average.

The malware samples we obtained were all Conficker variants verified by VirusTotal

and all of the samples were extracted from the Windows XP HIHs. Nevertheless, we have

observed several intrusions in our Windows 7 HIHs as well, which resulted in the clones

trying to perform DNS queries. The service exploited during these attack sessions were

against the SMB server running on port 445. To allow these intrusions to further interact

with the HIH to potentially drop a payload we will be refining our firewall policy to allow

some DNS queries and to allow connections to the IP’s mapped in the DNS response

(with certain rate-limiting applied as to avoid potential malware propagation from within

the honeynet).

While the combination of CoW RAM and filesystem enables the rapid creation of iden-

50

tical VM clones from a networking perspective the identical clones pose a new challenge:

the network interface in each clone will also remain identical, sharing both the MAC and

IP address of the original VM. Placing these clones on the same network bridge leads to

MAC and IP collisions that prevents proper routing. Prior systems employing similar tech-

niques, such as Potemkin [120] and SnowFlock [71] solved the problem of clone-routing

by performing in-guest IP reconfiguration of the VMs. As our system aims to achieve

stealth, such in-guest network reconfiguration could leave identifiable artifacts within the

sandbox and should be avoided.

Thus, to be able to retain the MAC and IP of the original VM, each clone is placed

upon a separate network bridge to provide isolation for the MAC of the clone and avoid

a collision. As seen in Figure 7, the clone’s bridge is also attached to the VM that runs

Honeybrid. This solution enables us to avoid collisions on the bridge, but requires custom

routing to be setup on the Honeybrid VM that can identify clones based on the network

interface they are attached to.

Figure 17: Projected memory savings of
Windows XP SP3. µ=75.52MB σ=10.1MB

Figure 18: Projected memory savings of
Windows 7 SP1. µ=170.94MB σ=48.3MB

In our experiments we evaluated the effective memory savings gained by the utilization

of memory sharing. As seen in Figure 17 and 18, the memory sharing approach has a

51

great potential to scale the honeypot operation, especially when the base honeypot image

requires a high amount of RAM.

3.6 Summary

As these experiments prominently show, hardware virtualization offers a variety of proper-

ties which can be used to great effect when developing malware collection tools. The tools

we developed have highligthed during live experiments that using hardware virtualization

based honeypots effectively expands the types of malware that can be captured. We also

determined limitations that need to be taken into account and should be addressed in

future work. To reflect on our core objectives, we summarize our findings in the following.

(O1) Scalability: The use of copy-on-write disk and memory has shown us that hardware

virtualization is an effective method to create malware collection systems. In our

prototypes we were the first to deploy memory-shared fully-virtualized honeypots.

Our experimental data has highlighted that copy-on-write techniques are key in pre-

serving hardware resources. However, the benefits rapidly decrease the longer the

collection sessions are active, thus great care must be taken into minimizing the

effects of background processes on the memory footprint of the honeypots. Future

work should explore the possibility of performing continuous memory deduplication

to preserve the benefits achieved herein.

(O2) Stealth: As our system design is focused on performing monitoring with an out-of-

band, passive memory scanner, our system minimizes the impact which could be

used for detection. As no in-guest agents or hooks are added, it is reasonable to

argue that malware has no direct way to determine whether the virtualized system

is monitored or not. Furthermore, as the honeypot systems can be configured with

great liberty as to what services are running, it would be increasingly difficult for

malware to create a static environmental fingerprint of the honeypot. However, once

52

malware is allowed to communicate with external systems, those external systems

may be able to observ the irregular network connectivity patterns of the honeypot

and use these to externally flag the network location.

(O3) Fidelity: The passive memory scanners utilized offer a direct way to improve the

fidelity of the data collection. As malware is known to modify standard kernel

structures used for in-guest monitoring, our scans by-pass these structures entirely.

Rather, our tool scans the entire physical memory of the honeypot to find structures

allocated on the kernel heap to perform state reconstructions. Thus, at the time the

system was prototypes it offered the best visibility into the honeypot. As this tech-

nique has now been widely used by forensics tools, new types of malware emerged

which deploy methods to counter this technique and these have to be addressed in

future work.

(O4) Isolation: While the use of virtualization and purely out-of-band monitoring offers

a great base-line of isolation, significant challenges were faced on providing such

isolation on the network. The techniques used to maximize scalability presented

unique problems for isolation, which have been effectively countered by our custom

network setup. It is important to note however, that the rapid development of virtual

switches has greatly reduced the effort required to build such segregated networks,

which we will also utilize in our next prototypes.

The experimental data collected shows the effectiveness of hardware virtualization as

a platform to develop highly scalable, stealthy and tamper resistant malware collection

systems. This data clearly indicates that hardware virtualization is an effective platform

for the development of malware collection tools satisfying our core objectives. The tools

developed during the research have been open-sourced to allow fellow researchers to

conduct their own experiments, some of which have already appeared at peer-reviewed

confereces [9].

53

4 Malware analysis

Since the proliferation of metamorphic malware, dynamic malware analysis has been an

effective approach to understand and categorize malware by observing the execution of

malware samples in a quarantined environment [36, 127]. The interaction between the

executing malware sample and the host OS allows dynamic malware analysis systems to

collect behavioral characteristics that aid in formulating defensive steps. Thus, in the con-

text of malware analysis the primary requirement is to collect information that a malware

analyst deems valuable.

In contrast with malware collection, where the primary requirement was well defined

and limited, for malware analysis the goal as we can see is generic. Evidently, determining

what information is deemed valuable is subjective and may differ depending on the end-

goal of the analyst. Some analyst may be interested only in the network traffic of the

executing malware sample, while for others the trace of system-calls is what contains

the most value. Yet another approach may be to simply extract all new and modified

files in the hopes of capturing the unpacked version of the malware which could then be

looked at with static analysis tools. Thus, in the following we aim to evaluate hardware

virtualization based techniques to accomplish only common aspects of malware analysis,

with the understanding that it is ultimately up to the analyst to decide what information is

deemed valuable.

We first begin with a discussion of the challenges in accomplishing our core objectives

in hardware virtualization based malware analysis systems. Afterwards, we present a

brief overview of the theory of virtualization and the core virtualization extensions avail-

able on modern Intel processors to aid the reader in better understanding the limitations

of these extensions that have to be taken into consideration in the system design. We

follow with our system’s design and implementation details. To evaluate the system under

realistic conditions we present extensive tests on a wide variety of malware samples and

54

provide a brief overview of the type of information we collected and how it may aid analyst

in gaining a better understanding of modern malware. We conclude the chapter with our

summary evaluation.

4.1 Challenges

There are a number of challenges one has to consider when constructing virtualization

based analysis systems. Foremost, the four core requirements have to be met, which has

thus far not been shown in practice. While in our discussion of prior work in Section 2.3

we highlighted systems that achieved some of the core objectives, thus far no system has

been developed that satisfies all four. The main challenges we focus on are summarized

in the following.

(O1) Scalability: Malware analysis systems also face linearly increasing disk and mem-

ory requirements as the concurrent analysis sessions are increased. As we have

successfully tackled this challenge in our prior prototype malware collection system,

the challenge we face is adapting the system to the new use-case.

(O2) Stealth: As with our malware collection system, in-band data-collection techniques

are deemed vulnerable, thus our focus is on using purely ouf-of-band collection

techniques. However, without an in-guest agent to start the execution of the malware

sample the primary requirement is at risk. Thus, the main challenge we consider in

this thesis is using only out-of-band tools to both monitor and start the execution of

the malware sample without leaving an identifiable trace in the sandbox.

(O3) Fidelity: As the primary goal is to collect as wide an array of information as possi-

ble to allow a high degree of flexibility in tuning the analysis, the main challenge we

face is performing the monitoring actively for both user- and kernel-mode malware.

While in our prior malware collection prototype data collection was performed pas-

sively at the end of the collection session, for malware analysis the full execution

55

trace may contain information that otherwise would be lost. Thus, data collection

has to happen live to allow the analysis system to contain the information it deems

necessariy.

(O4) Isolation: Our disaggregated system design used during malware collection has

been shown to be effective in isolating executing malware samples from each other,

as well as minimizing the exposure of the critical system components. However, as

the malware analysis system will interact with live malware samples directly, extra

precaution needs to be taken into performing this analysis from a de-privileged do-

main. Furthermore, the recent evolution of virtual switching technology allows us to

simplify our network requirements and use standardized VLAN technology to isolate

systems on the network.

It is important to note that there is an inevitable trade-off between Stealth and Fidelity :

the more intrusive the data-collection, the more likely the system will introduce time-skews

that may be used to detect the monitoring environment [110]. Prior research has exten-

sively delt with providing manipulated time-sources to executing malware samples in an

effort to thwart its detection routines [24]. However, in our opinion such efforts are at

best incomplete if the malware is allowed to communicate with external systems over

the network. While innovative approaches have been introduced in recent years to avoid

the introduction of such time-skews by performing an additional layer of copy-on-write

memory for the duration of introspection [64], such approaches in our opinion only shift

the trade-off to be between Scalability and Fidelity. We argue that currently the trade-off

between Stealth and Fidelity is more desirable as it is still extremely rare for malware

to attempt detection with the use of time-skews, while the introduction of extra memory

requirement would apply to all analysis sessions. However, this may easily change in the

future at which point our approach may need to be adjusted as well.

56

4.2 Overview of Hardware Virtualization Extensions

In the following we discuss the hardware virtualization extensions that are required for

effective run-time malware analysis. While the methods we deployed in Section 3 re-

lied on virtualization to access the memory of the Operating System (OS), by which we

achieved isolation, modern virtualization extensions offer a plethora of options to achieve

effective interposition into the execution of the live virtual machine. This ability to perform

interposition is critical in our context as that is what allows us to trigger introspection at

pre-configured points in the execution of the virtual machine, thus performing live analysis

of the executing malware samples.

In their seminal paper ”Formal Requirements for Virtualizable Third Generation Archi-

tectures” [92], Popek and Goldberg formalized the requirements for achieving full hard-

ware virtualization on modern processors. Among these requirements was the definition

for restricting access to resource control properties of the system, putting the VMM in

exclusive control of the real hardware. To achieve this, they classified instructions based

on privileged instructions which are required to trap - that is, to transfer control to the

VMM instead of actually executing. Such traps are critical for our malware analysis sys-

tem as they bypass the guest operating system entirely: with the right configuration of

traps we can monitor the execution of the sandbox without the sandbox being aware of

this monitoring.

On modern x86 Intel CPUs there are a handful of such instructions which uncon-

ditionally trap to the VMM according to the Intel SDM [56], such as CPUID, GETSEC,

INVD, XSETBV, INVEPT, INVVPID, VMCALL, VMFUNC, VMCLEAR, VMLAUNCH, VMPTRLD,

VMPTRST, VMRE-SUME, VMXOFF, VMXON. These instructions are mainly used for man-

aging virtual machines and other security features. While these instructions define the

absolute minimum of instructions that are required to be trapped, a handful of other in-

structions can be further configured to also trap to the VMM. These optional configuration

57

settings are stored in the VM’s Virtual Machine Control Segment (VMCS) by the VMM,

which is read by the hardware each time the VM is scheduled to execute.

While on today’s CPUs the set of optional trapping instructions is quite extensive, it

has been a challenge over the years to find the combination of trapping instructions which

correspond to high-level system behavior, such as system-calls [91]. The problem is

largely due to the fact that the instructions used in these situations can’t themselves be

configured to trap to the VMM, thus alternative settings need to be configured to work

around the hardware limitations. This however often leads to trapping more than what is

required. For example, Dinaburg et al. [24], proposed a set of mechanism that relied on

changing paging permissions found in the shadow page-tables to trigger violations which

can be trapped to the VMM. However, due to the granularity of page permissions, this

often leads to violations being triggered by events that were not the target.

4.2.1 VM Scheduling

Figure 19: CPU modes available on mod-
ern x86 Intel CPUs as descirbed by the Intel
SDM [56]

Figure 20: Summary of VMX operation on
Intel CPUs

On modern x86 Intel CPUs there are a variety of operational modes, as seen on

Figure 19. Virtualization is normally used in Protected mode (32-bit hypervisor) and in

IA-32e mode (64-bit hypervisor) with VMX-root privileges. When virtualization is used,

the guest operating system can decide for itself which of the available operation modes it

needs (except SMM) as it will run in VMX-non-root mode. Virtualization is also available

58

in System Management Mode, which we will discuss further in Section 5.

As seen in Figure 20, the hypervisor mode is not enabled by default as the VMXON

instruction needs to be executed first to signal to the processor to turn on the virtualization

extension. After the VMM is activated, scheduling of the VM is performed via VM entry

operations, such as VMLAUNCH and VMRESUME. VM exits are triggered by the guest any

time a privileged instruction is executed, via the VMX-preemption timer or optionally if

guest inactivity is detected when HLT, MWAIT or PAUSE is executed. As of today the Intel

manual defines 64 different reason that could cause a VM exit. During these operations,

information about the guest VM’s state is passed via a memory in the VMCS.

The VMCS is a special control structure established for each virtual CPU, which can

be only modified through designated instructions after it is initialized. Each CPU can only

execute one vCPU at a time, and a vCPU can only execute on one CPU at any given time.

The VMCS stores the guest execution state in the guest state area so that the VM can be

resumed, while the host state area stores the host state to be restored and the pointer to

the function to be executed when a VM exit is performed. The VMCS is also responsible

to define the set of optional configuration settings for trapping additional instructions.

4.2.2 Optional Traps

Among the optional traps that can be configured for Intel CPUs, a handful are of particular

interest for VMI. On x86 machines, the registers CR0 and CR4 of particular interest, as

these hold the configuration of options the guest operating system is currently using, such

as paging mode, security extensions and cache management. These configurations are

essential to be tracked during the run-time execution of the guest OS, as any modification

to these registers significantly alters the behavior of the guest OS.

Similarly, the register CR3 is of particular interest, as when paging is enabled (as

defined by CR0 bit 31), this register holds the physical address of the page-table for the

currently executing process. This is essential for the hardware to be able to perform the

59

virtual-to-physical (V2P) memory translation on behalf of the process. Thus, by being

able to monitor changes of the CR3 register, we immediately gain valuable information

about the scheduling that takes places inside the guest OS. Monitoring of this register

was employed exactly for this reason by AntFarm [60].

Additionally informative traps are the occurrence of an exception. Exceptions include

a variety of events, including faults, traps and aborts performed by the CPU while in VM

mode. In order to avoid trapping all exceptions, Intel provides a mechanism via a bitmap

in the VMCS to select which exception causes a VM exit. If the bit corresponding to the

exception is 0, the exception is delivered normally via the guest Interrupt Descriptor Table

(IDT). For our purposes of particular importance is the treatment of the exceptions caused

by the INT3 instruction, which can also be configured via this mechanism to cause VM

exits. Exceptions which may be additionally defined for trapping include debug exceptions,

page faults and general protection faults.

4.2.3 Two-stage paging

Figure 21: EPT Overview
Figure 22: Handling an EPT violation on
Xen.

60

Historically, a VM was required to perform a software based address translation from

Guest Virtual Address (GVA) to Guest Physical Address (GPA). The hypervisor performed

this action through the shadow page table and it had a significant performance cost. In

response, Intel introduced EPT, a new virtualization extension. This extension rectified the

situation by providing hardware assisted address translations at both stages, as shown

in Figure 21. With EPT, the VM no longer needed to invoke the hypervisor to perform

page table operations. This provided a boost in performance by alleviating the necessity

to perform a VMEXIT when doing an address translation and by freeing the hypervisor

from having to maintain the shadow page table.

Security software running outside of the VM has a long history of using the second

stage translation to trigger traps for active monitoring. This technique was first used by

Ether [24] to trace system calls through modifying the access permissions in the shadow

page tables. In newer systems, such as CXPinspector [128], the EPT itself has been used

for this purpose because violations in the second stage translation traps into the hyper-

visor. Combined with other CPU extensions, such as the eXecute-Never (NX) bit, EPT

allows for tracing arbitrary memory R/W/X operations. Furthermore, this tracing remains

invisible to the guest, as the second-stage pagetables are managed by the hypervisor and

the violations are delivered to the hypervisor directly by the hardware.

During an EPT violation, the VMCS further describes the location of the violation,

both as a GPA and as a GVA. Additionally, the VMCS also describes if the violation oc-

curred during a first-stage GVA translation (violation during the CPU’s first-stage page-

table lookup) or with the final GPA obtained from the translation.

While tracing memory accesses with EPT is stealthy, the performance overhead is

considerable. Each violation on a monitored page needs to be first cleared and then reset

to allow the VM to continue the execution but to still catch all subsequent events. On

Figure 22 we show the common handling of EPT violations on Xen. In case only a certain

section of a page is of interest, the tracer also needs to filter unrelated violations, further

61

adding to the performance overhead and complexity of handling EPT violations.

4.3 System design

In our prototype system, named DRAKVUF, we implemented a set of data collection

mechanisms for 32-bit and 64-bit versions of Windows 7 SP1. The system expanded

upon our prior malware collection prototype to maximize the number of sessions that

can concurrently run on the hardware via copy-on-write disk and memory. However, the

monitoring system has been completely replaced by a VMM-event based tracking, thus

eliminating the need for scanning the memory for data-structures of interest.

Figure 23: System overview of DRAKVUF

Our prototype named DRAKVUF is built on the open-source Xen Project Hypervisor.

The high-level organization of system components is illustrated in Figure 23. To allow fast

deployment of analysis VMs, DRAKVUF creates full VM clones via Xen’s native copy-on-

write (CoW) memory interface and the Linux logical volume manager’s (LVM) copy-on-

write (CoW) disk capability. While the static components of the analysis VMs’ memory

and disk are shared, the use of copy-on-write prevents clone VMs from interacting with

62

each other as they don’t have access to exclusive resources allocated to other clones.

DRAKVUF runs in a secondary control domain and makes use of direct memory ac-

cess (DMA) through the LibVMI library. Within this secondary control domain DRAKVUF

also has access to hypervisor features to control virtualization extensions provided by the

CPU, such as the Extended Page Tables (EPT). However, the hypervisor restricts to abil-

ity of the DRAKVUF domain to interact and affect domains specifically labeled as VMs

assigned for analysis using the native Xen Security Modules (XSM) [21]. In order to facili-

tate access to events associated with the execution of the analysis VMs, DRAKVUF uses

a combination of techniques to trigger a transfer of control to the hypervisor (VMEXIT)

when required.

The core technique we employ is the use of breakpoint injection in which a #BP instruc-

tion (INT3, instruction opcode 0xCC) is written into the VM’s memory at code locations

deemed of interest. The breakpoints are further protected by EPT permissions so their

presence cannot be discovered by code running within the guest. By configuring the CPU

to issue a VMEXIT when breakpoints are executed and configuring Xen to forward such

events to the control domain, DRAKVUF is capable of trapping the execution of any code

within the analysis VM. In DRAKVUF we are the first to apply the technique for automatic

execution tracing of the entire OS and demonstrate how it is a key component in enabling

active VMI. With this technique DRAKVUF gains deep insight into both kernel and user-

land code execution. As the system’s integrity is assumed to be valid before a malware

sample is executed, we take advantage of using standard in-guest data-structures to map

out the system’s internal layout, thus bridging the weak semantic gap problem. Once the

malware sample is started, we tackle the strong semantic-gap problem by dynamically

trapping kernel heap allocations and the kernel’s internal functions.

In DRAKVUF we address the previously overlooked problem of starting the execution

of a malware sample without leaving a trace: thus far the task had to be either performed

manually, which hinders scalability [23, 24]; or with the use of in-guest agents that can

63

be detected [14]. DRAKVUF addresses this shortcoming by enabling the automatic ex-

ecution of a sample without the use of in-guest agents, as the presence of such agents

could be used to detect the monitoring environment. Instead DRAKVUF uses active VMI

via #BP injection to hijack an arbitrary process within the VM to initiate the start of the

malware sample, a technique further described in Section 4.4. By using existing pro-

cesses running within the VM, DRAKVUF does not introduce new code or artifacts into

the analysis VM, thus greatly improving stealthiness.

As malware is known to use external input and resources to function, providing net-

work access to the analysis VMs is also required. In order to maintain isolation between

DRAKVUF and the analysis VMs, network traffic passes through a domain running Open

vSwitch and exits through a VLAN NAT domain containing a physical network card passed

through using Intel VT-d. The clones are placed on separate VLANs, therefore the only

network access they have is through the NAT engine which actively prevents the analysis

VMs from discovering each other over the local network. This setup is aimed at mini-

mizing the number of components within dom0 that expose an interface to the infected

clones, as we consider emulated device backends to be a more likely attack surface as

compared to the minimal interface exposed by the VMM.

To further minimize the exposure of critical system resources to malware which may

hypothetically use DRAKVUF itself to stage a break-out attack, we further isolated DRAK-

VUF to a deprivileged secondary control domain. Using XSM a security policy has been

created and enforced which limits the access of the DRAKVUF domain to interact only

with domains used for the analysis sessions, effectively removing DRAKVUF from the

TCB of the system. The only communication channel DRAKVUF retains with the TCB is

a single-command interface with dom0 through XenStore to request the deployment of a

new analysis VM. This step further strengthens the system’s isolation .

64

4.4 Stealth

The stealth of virtualization based analysis systems has been commonly considered in

the context of the detection of the monitoring environment itself and not the detection of

virtualization in general [24]. The argument for this division is that the already wide-scale

deployment of virtualization in commodity systems creates an economic incentive for mal-

ware not to exclude virtualized systems. With these assumptions in place, DRAKVUF

expands upon prior research that showed that the combined use of breakpoint injection

with EPT protection is an effective technique to hide from even the most advanced anti-

debugging techniques [23]. Time skew introduced by trapping the guest into the hyper-

visor has also been effectively countered in prior research by altering the guest’s access

to hardware time sources such as the TSC, although external time sources could still be

available to the malware if network access is allowed.

Figure 24: Initiating the execution of malware samples without in-guest agents

In DRAKVUF, we have turned our attention to a critical step so far overlooked in auto-

mated dynamic malware analysis: we start the execution of the malware sample without

65

leaving an identifiable trace of the monitoring environment. With systems where an in-

guest component is used, the execution can be initiated by the monitoring agent itself,

but the same in-guest component could be potentially used to detect monitoring, even

if it is only an auto-start script. On the other hand, when no in-guest agent is present,

the sample has to be started manually. Therefore, in order to avoid creating any artifacts

within the analysis VMs but to allow automated execution, we implemented an injection

mechanism that hijacks an actively running but arbitrary process within the VM to initiate

the start of the sample on our behalf.

BOOL WINAPI CreateProcessA(
In opt LPCTSTR lpApplicationName,
Inout opt LPTSTR lpCommandLine,
In opt LPSECURITY ATTRIBUTES lpProcessAttributes,
In opt LPSECURITY ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
In opt LPVOID lpEnvironment,
In opt LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS INFORMATION lpProcessInformation

);

Table 4: Function prototype of the CreateProcessA function

On Windows, a new process can be created by any user-space application via the

CreateProcessA function (shown in Table 4), which is part of the standard Windows API

exposed by the kernel32.dll library [82]. While not every application on Windows has

kernel32.dll loaded, generally only a view system processes are the exception, thus in

practice DRAKVUF can hijack any normal application.

The injection mechanism relies on a set of events, shown in Figure 24, to successfully

hijack a process without causing system instability or altering the state of the machine

in a way that would reveal the monitoring environment. As the first step after the clone

analysis VM is created, DRAKVUF traps write events that happen to the control regis-

ter CR3 to catch when a process context switch occurs. When an event is caught, we

66

examine what libraries are loaded in the address space of the now running process by

walking the list of loaded modules within the process. If the process has kernel32.dll

loaded into its address space, the execution of the VM is switched into single-step mode

until the process starts executing user-level code (CPL3). This is required since after the

context-switch the process is still executing in kernel-mode and calling any API mapped

into the user-space (paged memory) of the process would cause of ”Bug Check 0xA:

IRQL NOT LESS OR EQUAL” error.

While the singlestep approach has been sufficient in most cases, in later revisions of

the prototype we have evaluated additional mechanisms to detect when execution returns

to user-mode. This further exploration was prompted by the overhead that singlestepping

presented, as it often lead to the process never reaching user-mode before being sched-

uled out again by OS scheduler. Instead, a more reliable method has been by finding the

trap frame on the executing user stack. The trap frame is a critical system structure that

the operating system prepares when a process is being scheduled out, which allows the

OS to resume the process at a later time. Most importantly, the trap frame contains the

address of the first instruction that should be executed once the process is switched to

user-mode. This presents an ideal method to detect when the process has returned to

CPL3.

Another possibility for trapping return to usermode could also be accomplished by the

injection of Asynchronous Procedure Call (APC) [105] into the target process when it is

scheduled out. An APC on Windows is a linked-list that contains elements describing the

necessary functions the process should call before returning to CPL3. The APC could

define both kernel-mode calls as well as user-mode calls. The APC calls can only be

of type APCProc, thus we can’t inject arbitrary calls via this mechanism. For example,

the CreateProcess functions take multiple inputs (as shown in Table 4, while APCProc

functions take a single pointer to their input, thus we can’t use this method for process

injection directly. Nevertheless, it is still sufficient for dll injection, as the LoadLibrary

67

functions share the same prototype. We can also inject a call this way to an arbitrary

location that we have already breakpointed, thus detecting when the process’ APC queue

is being processed in user-mode from the hypervisor level.

The hijack mechanism takes over the execution at the first instruction executed in

CPL3, and locates the CreateProcessA routine in kernel32.dll’s export table. First, to

locate kernel32.dll, the process’ loaded library list has to be walked to find the desired

library. This is done by walking the linked list that starts at the location defined within

the Process Environment Block (PEB) of the process. The PEB points to a structure,

PEB LDR DATA, which holds the linked list of loaded libraries. In fact, there are three

copies of the list, each ordered differently for optimized searches: in load order, in mem-

ory order, and in initialization order. For our purposes the load order list is preferred, as

kernel32.dll is a critical system library usually being loaded very early during each pro-

cess’ initialization. The elements in the list are of type LDR DATA, with the library names

stored in Unicode format. During enumeration we convert the names to UTF-8 first, and

once the required library - kernel32.dll - is found, we obtain the library’s base address

from the the field DllBase.

Once the library base address is found, we continue by locating the export table. The

export table is part of the Portable Executable (PE) header, at an offset defined in the

data directory array at index 0, corresponding to the IMAGE DIRECTORY ENTRY EXPORT

definition. The export table on Windows is used to list all function entry points that the

library makes available. The export table structure itself begins with a reserved 32-bit field

which must always be set to zero. On Windows 7 the export table is occasionally mapped

on page-boundaries, such that the first reserved field is not accessible, as it is mapped

onto a page that is not in the process’ virtual memory. The table lists available functions

both by name and by ordinal to speed up function lookup. When a process is loaded,

the loader looks up all functions it uses from a library based on either the name or the

ordinal and maps the address of the function into the process’ import table to avoid further

68

lookups during run-time. However, using the import table is optional and a program can

use any function that is exported by a loaded library.

Once the function’s virtual address is determined by parsing the export table of ker-

nel32.dll, we are tasked with imitating the results of what an actual call to the library

function would look like. Calling conventions differ depending on the compiler, and further

differ depending on the underlying architecture. To better understand this process, we

need to look at the assembly instructions of a simple binary that executes this function

(shown in Listing 2) to determine the calling convention used by the Microsoft compiler

(assembly for x86 is shown in Listing 3 and for x86-64 in Listing 4). As can be seen,

on x86 all arguments as passed via the stack, in opposite order. That is, the pointer

to the PROCESS INFORMATION structure is pushed first on the stack. Furthermore, no

differences between the type definitions are present between 0, NULL and FALSE. It is

also important to note the 4-byte alignment of the variables on the stack, irrespective of

the underlying type. This alignment is particularly important for pushing the command

line string argument on the stack, which needs to be 4-byte aligned as well. In case the

string’s length is not 4-byte aligned (with the NULL-termination included), it is necessary

to pad the remaining space to make sure the string’s start is aligned.

On x86-64 we can see a shift in that only a subset of the function input parameters are

passed via the stack, the first four arguments are passed via the RCX, RDX, R8 and R9

registers. However, the first input parameter passed on the stack is located +20h bytes

above the stack pointer (RSP). The space, corresponding to the first four arguments, is

still reserved - even if the function takes less then four parameters - and is called a pa-

rameter homing space. This space is used ”if either the function accesses the parame-

ters by address instead of by value or if the function is compiled with the /homeparams

flag” [98]. The /homeparams flag is only available on checked builds and results in all

values passed via registers also being saved on the stack.

In our hijack mechanism, based on the information gathered from the disassembled

69

Figure 25: Setup of the stack for function call injection of kernel32.dll!CreateProcessA on
a 32-bit Windows 7. The setup is similar for 64-bit Windows, where p1-p4 are passed on
registers instead of the stack.

binaries, we can sketch out how the stack needs to look like, shown on Figure 25. While

the disassembled binaries all end with a call instruction, we further need to highlight

what effect this instruction has on the stack. In fact, a call instruction can be also replaced

by a pair of PUSH address after call; JMP operand instructions [133]. The JMP

operand instruction can be further thought of as mov RIP, operand. Thus, after the

input parameters are placed on the stack, the final value placed on the stack is the in-

struction where the execution should return after the callee finishes. Here, we place the

address of the original instruction that should have executed (the current address in RIP),

70

and we further write a breakpoint into this location.

When the return breakpoint is hit, we can determine if the process has been success-

fully created by examining the RAX register, and if it was successful, we also obtain the

PID and the handle information of the process that will be used by the executing malware

sample. As a context switch could occur while CreateProcessA is executing, the return

trap checks if the process at the return trap is the one that was hijacked. Before resuming

the original execution of the hijacked process, the stack and vCPU registers are restored,

thus seamlessly resuming the execution of the process.

In our implementation we use this mechanism to start malware samples in clean virtual

machines. By using this hijacking routine, no artifacts are left on the system that could be

detected as a fingerprint of the monitoring environment. This property may not hold if a

malware sample is started in an already infected machine, a use-case that we considered

out-of-scope for our implementation.

Furthermore, any process running within the system can be hijacked to initiate the

execution of the malware sample as long as kernel32.dll is loaded into its memory space,

which in practice constitutes the majority of processes on Windows. However, the sample

of the malware has to be present on the filesystem of the analysis VM for the injection

to work. As the clone VM inherits the execution state of the origin VM, simply placing

the sample on the analysis VM’s CoW disk is insufficient, as the in-memory filesystem

information does not reflect the presence of the new file. In our prototype system the

samples have to be placed on the disk of the origin VM before clones are created as to

later allow the clone VMs to access them. In the future the samples could be loaded into

memory directly by either employing process hollowing techniques through VMI [72] or

by hijacking the control flow of the OS when the file would be loaded from the filesystem,

further improving the usability of the system.

71

4.5 Execution tracing

A key feature of existing dynamic malware analysis systems is the ability to trace the

execution of processes by monitoring system calls. However, monitoring only system

calls limits the execution trace to the interaction between user-space programs and the

kernel, thus excluding the execution of kernel-mode rootkits. To overcome this issue, in

DRAKVUF we took an alternative approach by directly trapping internal kernel functions

with a technique known as breakpoint injection.

On modern processors the breakpoint instruction (hex 0xCC) can be configured to trap

to the hypervisor directly. Thus, by writing this instrusion into select code location we can

induce a trap directly at points in the execution we are interested in. With direct trapping

DRAKVUF is able to monitor malicious drivers, as well as rootkits, which was previously

not possible with just system call interception. Since these instructions are placed into the

guests’ memory, extra precaution needs to be taken to prevent the guest from discovering

these breakpoints. This is fortunately also achiavable by further marking the pages where

these breakpoints are placed execute only in the EPT. This way, any attempt by the guest

to read the code where the breakpoint is placed is first trapped to the hypervisor and thus

the memory can be reverted as to present the original content of the memory location.

The location of the kernel functions are determined by extracting information from

the debug data provided for the kernel. The use of debugging information has been an

established method in the forensics community and it is the most convenient avenue to

gain insight into the state of the operating system. In DRAKVUF we make use of the

Rekall forensics tool [94] to parse the debug data provided by Microsoft to establish a

map of internal kernel functions.

At run-time, DRAKVUF locates the kernel automatically in memory without having to

perform signature based scans, which improves resiliency as compared to existing foren-

sics tools [85,119]. To automatically locate the kernel in memory we make the observation

72

that Windows 7 uses the FS and GS registers to store a kernel virtual address pointing

to the KPCR structure, which is always loaded into a fixed relative virtual address (RVA)

within the kernel, identified by the KiInitialPCR symbol. As we have obtained the RVA

for all kernel symbols, including KiInitialPCR, we only have to subtract the known

RVA of the symbol from the address found in the vCPU register to obtain the kernel base

address.

Once the kernel base address is established, DRAKVUF can trap all kernel functions

via #BP injection. With internal kernel functions being trapped, the logs thus generated

provide a full trace of the execution of the OS from the moment the malware sample is

executed.

4.5.1 Tackling DKOM attacks

Rootkits notoriously modify internal kernel structures to hide their presence on a sys-

tem, commonly referred to as DKOM [17]. Standard DKOM attacks are performed by

unhooking structures from kernel linked-lists (like the running process’ list), which effec-

tively prevents tools that use these lists to enumerate the structures from discovering the

additional elements. Forensics tools have long discovered that objects within the Win-

dows kernel heap are created with an additional header attached (POOL HEADER). This

header contains a four-character description of the structure that can be used to detect

unhooked structures by simply performing a brute-force string search for these tags in

physical memory [16,102,121].

As pooltag scanning became a standard approach in forensics, malware is known to

attempt to overwrite the header to prevent scanning tools from later finding these struc-

tures [31]. Other rootkit techniques hide the structures by disconnecting the allocated

object from its header by changing the requested object size to be greater than 4096 KB,

as such allocation requests result in the object being placed into the big page pool where

no such header is attached to the object. This technique effectively prevents basic pool

73

tag scanning routines from fingerprinting the object.

However, having access to these internal kernel structures is critical in understand-

ing the runtime state of the system, therefore in DRAKVUF we took a new approach to

tackle DKOM attacks. As we see from the description of the attack methods, the root

cause of the problem with DKOM attacks is that the location of the structures becomes

unknown within the kernel’s heap. If the location can be accurately determined, DKOM

is effectively defeated [95]. With DRAKVUF we track the kernel heap allocations directly

with #BP injection at internal Windows kernel functions responsible for allocating memory

for structures used by Windows: ExAllocatePoolWithTag and ObCreateObject.

DRAKVUF dynamically extracts the return address from the stack of the calling thread at

function entry and traps it to catch the event when the allocation routine returns. Mon-

itoring heap allocations allows us to detect the location of all kernel structures without

malware being able to tamper with our view into the system.

In the current implementation DRAKVUF tracks the allocation of all objects on the

kernel heap, and generates logs based on the associated tag of the structure. If the tag

of the structure is one of the already known 2,254 tags, the log contains further details

about the type of the object to aid the analyst in identifying allocations that may be of

further interest. To detect for example a hidden process, an analyst can now apply a

cross-view check to determine if the allocated structures are also accessible via standard

lists [59]. DRAKVUF further traps the routines responsible for freeing these structures,

thus providing a full-view into the life-cycle of the structures. In the next section we further

illustrate how this approach enables us to track the active usage of FILE OBJECTs.

4.5.2 Monitoring filesystem accesses with memory events

Monitoring filesystem accesses is one of the core feature of any dynamic malware anal-

ysis system, however, prior agentless VMI approaches have attempted to monitor file-

system accesses by modifying the disk emulator to intercept events [88]. While such an

74

Figure 26: Tracking file accesses by monitoring the allocation of FILE OBJECTs in the
Windows kernel heap.

approach is effective, reconstructing high-level file-system accesses (like path and per-

missions) from the low-level disk-emulation perspective is in itself a form of the semantic

gap problem and requires extensive knowledge of file-system internals. However, the in-

ternal kernel structures that DRAKVUF tracks reveal highly valuable information about

the execution state of the system, such as the complete set of running processes, kernel

modules, threads, and even objects allocated for filesystem accesses by the OS.

The process by which we catch filesystem accesses is shown in Figure 26. When a

file is accessed, either by the OS or by a user-land process, a FILE OBJECT is allocated

within the kernel heap with the accompanying tag, "Fil\xe5". When the allocation

address is caught, we mark the page on which the structure is allocated as non-writable

in the EPT. As the FILE OBJECT is preceded by a set of optional object headers (shown

75

with a gray background), we derive the exact location of the access flags and file name

by subtracting the known size of the FILE OBJECT from the end of the heap allocation.

This allows us to determine the full path of the file as well as the access privilege with

which the file is accessed, such as read, write and/or delete permission, without the need

to have any deeper understanding of the filesystem itself.

As the pool tracking mechanism traps the call to the entry of the allocation routine,

in order to determine where the space is allocated we inject an additional trap into the

return address of the function that is pushed on the stack. When the trap at the return

address is hit, the kernel virtual address where the object has been allocated can be

read from the vCPU register RAX. However, it is possible that a context switch happens

before the allocation routine returns, which in turn can also call the allocation routine,

potentially resulting in a trap at the same return address having multiple objects pending

allocation. Therefore DRAKVUF keeps track of the allocations based on the CR3 value,

which identifies the process, and the RSP, which identifies the thread of the caller, to avoid

confusion between pending object allocations.

4.5.3 Carving deleted files from memory

A common feature of malware droppers is the rapid creation and deletion of temporary

files used during the infection process [10]. These temporary files can potentially contain

the unpacked malware binary before it is loaded into memory, or other forensically relevant

information. However, malware authors are well aware of this fact and it is standard

procedure to clean up the temporary files after the dropper finishes installing the malware.

Existing malware analysis systems implemented with the use of in-guest agents can

simply retrieve these files when file-deletion is initiated. From a VMI perspective, retrieving

these temporary files is complicated by the fact that Windows defaults to write caching

being enabled on all hard-drives. When files are created and destroyed rapidly, as is

often the case when malware is being dropped on a system, the files are never written to

76

disk. As a result simply mounting the analysis VM’s disk in the control domain would not

give access to these files and the only possible scenario is to carve the files directly from

memory.

In DRAKVUF, the carving of deleted files is implemented by intercepting specific inter-

nal kernel calls that are responsible for file deletion, such as the NtSetInformationFile

and ZwSetInformationFile routines. Once the functions are intercepted, the file is

identified by examining the arguments passed, among them the file handle information.

This handle does not point directly to the file object, it is only a reference number to an en-

try in the handle table of the owning process. By parsing the handle table of the process

we can locate the corresponding FILE OBJECT and automatically carve it from memory

with Volatility [119]. This enabled us to capture transient files during the execution of the

malware sample, resulting in the capture of previously unknown binaries with virtually no

AntiVirus detections, which we will further discuss in Chapter 4.6.

4.6 Experimental results

In the following, we discuss an extensive set of experiments performed to establish per-

formance metrics and to evaluate the effectiveness and throughput of the systems. The

experiments were performed on an Intel Second Generation i7-2600 CPU running at

3.4GHz.

Unless specified otherwise, the samples were executed on a Windows 7 SP1 x64

analysis platform with a run-time of 60 seconds. During these tests DRAKVUF was set to

monitor the execution of each internal kernel function that starts with Nt or Zw. The func-

tions starting with Nt are the functions available to user-space applications through regular

system calls as listed in the System Service Dispatch Table (SSDT) and monitoring the

Zw version of these functions reveals the execution of kernel-level code. We also trap two

additional kernel internal-functions, ExAllocatePoolWithTag and ObCreateObject,

which are responsible for kernel heap allocations. While monitoring all internal functions

77

would have been possible during these tests, we reduced the scope of tracing as to re-

duce the verbosity of the collected data without hindering the insight into the execution of

the system.

4.6.1 Rootkits

The first sample we tested was TDL4 2. This sample was chosen since an in-depth techni-

cal write-up has been already created by an antivirus company after reverse engineering

the sample [49], which provides a contrast to our automatic analysis. The dropper itself

had a 45/46 detection ratio on VirusTotal (VT) [115]. After executing the sample in a Win-

dows 7 SP1 x64 analysis VM, we obtained two additional temporary files created by the

dropper in the Windows’ System32 folder: cryptbase.dll 3 and syssetup.dll 4.

These temporary files were carved from memory as they were created by the dropper

and never flushed to disk before deletion. After submitting the files to VT, the detection ra-

tios were reported as 19/50 and 22/50 respectively. Further investigation into the nature of

these temporary files, unmentioned in the original analysis report, revealed them as being

part of a known method to elevate privileges by circumventing user access control (UAC)

on Windows 7 and 8 [63]. After the exploit installed its payload, a system shutdown was

initiated, at which point 1.1GB of memory out of the 2GB assigned to the VM remained

shared.

We also obtained a sample of the SpyEye2 banking trojan 5, recently released as part

of a report made by Fox-IT Security [40]. The sample had a detection ratio of 26/50 on

VirusTotal and after 60 seconds of execution 1.6GB of memory remained shared on the

analysis VM. No file deletion requests were caught during our analysis and no malicious

file manipulations were made by the injected process. However, after closer examination

we can see that immediately after the initial binary executes, svchost.exe attempts to ac-

cess files within the same folder where the initial binary is placed at. Most suspicious

of these files is ”\Users\MrX\Desktop\spyeye \pc\l1\COLCUBE.BIN”, but provided that

78

the file wasn’t actually present on the filesystem, the access fails, and no other modi-

fications of the system are observed. This file path only shows up as being part of a

Russian torrent advertising itself as ”Test Drive 4 full version (ENG)” on Google, uploaded

on 09/16/2012, which fits into the malware’s reported activity period of 2012-2013, and

therefore presumably was used to propagate the malware sample.

The next sample we analyzed was a recent sample of Zeus 6 with a VT detection ratio

of 44/50. In our analysis no files were deleted. However, in our logs we see the sample

interacting with files in a temporary folder, GoogleUpdate.exe having a VT detection ratio

of 43/50, and FlashPlayer.exe which had no VT detection and was identified as a real

Adobe installer. A DLL was also located in the temp folder, msimg32.dll7, with a VT

detection ratio 25/47 that has never been submitted before. The DLL was later revealed by

our logs to be dropped into ”\Windows\System32” by the executing flash player installer.

The sample’s installation behavior very closely follows that of ZeroAccess [131], also

analyzed by HP [97]. After executing the sample for 60 seconds, the analysis VM had

1.4GB memory in shared state.

Another recent sample we analyzed was CryptoLocker 8. The original sample had

a detection ratio of 35/48. After executing the sample and checking for file accesses, the

unpacked executable is identified: ”\Users\MrX\AppData\Roaming\B8B838D254.exe”.

No deletion was requested on any file during our analysis, therefore after 60 seconds

of execution we carved the file from memory with Volatility. The file obtained 9 had a

detection ratio of 8/49, but after repeating the experiment with a time-out of 3 minutes, the

unpacked executable was also obtained from disk 10 which had a detection ratio of 35/48.

After 60 seconds of execution 1.3GB of memory remained shared, and after 3 minutes,

955Mbyte did.

Out of the sample set, one deleted executable had no AV detection11. The executable

is only 4.5Kbyte12, which appears to be consistent with reports on the malware family

the original sample was classified as, albeit still being smaller than the reported size of

79

20Kbyte [67]. From our execution logs we were able to determine that first the sam-

ple loads a set of DLL’s from Windows, then tries to locate ”C\WINDOWS\System32-

\TENSAFE.SYS” for deletion. However, the path is invalid: note the missing semi-colon

after C and the fact that Windows keeps track of devices separate from the file path

string in the OBJECT HEADER NAME INFO structure. No other outstanding events were

observed however during the execution of the sample.

As in the first run only deleted files were extracted from the analysis VM, we repeated

the execution of the sample such that all files get extracted when their handle is being

closed, however, no AV detection was made on any of the files either. Comparing the

checksum of the files in the CoW partition to the origin showed no discrepancies.

No AV detections were made on any of the files accessed during the analysis session,

except one by AVG on RpcRtRemote.dll: Win32/Heur. However, when we repeated the

experiment RpcRtRemote.dll had no detection, therefore it is reasonable to assume to

be a false positive in the heuristics of AVG. We further verified file integrity on disk after

shutting the analysis VM down and comparing the checksums of the CoW partition to the

original, and found no discrepancies.

4.6.2 Anti-VM malware samples

In order to test DRAKVUF at scale, we obtained 1000 recent malware samples from

ShadowServer [103]. The samples were selected with the AlienVault YARA signature that

implies the use of anti-virtualization techniques [1]. During these tests paging and the

UAC were disabled. The malware samples were placed on the VMs origin disk, thus the

malware startup were simply initiated with a direct CreateProcessA injection, as described

in Section 4.4.

Out of the 1000 samples, 241 failed to execute via CreateProcessA injection. These

executions failed not because the malware shut itself down but because Windows failed

to execute the samples. On average, 159,222 breakpoints had been hit in 60 seconds

80

Figure 27: Top 10 monitored kernel functions in terms of average number of observed
executions.

Figure 28: Breakdown of 8797 intercepted file deletion requests by type in recent malware
samples.

81

Figure 29: Number of Read EPT violations versus breakpoints hit within 60 seconds when
trapping all internal kernel functions.

Figure 30: Projected CoW memory allocations (µ = 764MB, σ = 151MB).

82

of execution, and on average 67,950 were pool allocation requests. Figure 27 illustrates

the top 10 API calls that were hit across all samples with the internal functions used for

heap allocations among the top three. From this figure we can see that some internal

kernel functions are executed significantly more often, thus allowing the analyst to pick

and choose those functions that are required for the analysis goal, as we did for these

experiments. Only read violations were observed during these tests, an average of 12,182

per session. Our file access tracer recorder an average of 2386 files being accessed, and

an average of 12 file deletion requests.

$:hash:procexp.exe
$:hash:procmon.exe
$:hash:processmonitor.exe
$:hash:wireshark.exe
$:hash:fiddler.exe
$:hash:vmware.exe
$:hash:vmware-authd.exe
$:hash:vmware-hostd.exe
$:hash:vmware-tray.exe
$:hash:vmware-vmx.exe
$:hash:vmnetdhcp.exe
$:hash:vpxclient.exe
$:hash:devenv.exe
$:hash:windbg.exe
$:hash:ollydbg.exe
$:hash:winhex.exe
$:hash:processhacker.exe
$:hash:hiew32.exe
$:hash:vboxtray.exe
$:hash:vboxservice.exe
$:hash:vmwaretray.exe
$:hash:vmwareuser.exe

Table 5: Strings embedded in the
temporary files of MultiPlug hint
at anti-debugging techniques em-
ployed.

A total of 8797 unique files were extracted from

the analysis VMs by carving them from memory be-

fore deletion. To better understand the nature of the

deleted files in the analysis VMs, we categorized the

files by their type, shown in Figure 28. The 1,412

PE files were also submitted to VT. 561 were new

submissions (39%), and nearly all of the files had

at least one AV detection. On average, only 20.4%

of the anti-viruses (AVs) categorized these files as

malware. Out of these files, only 2 had no detection

with any AV engine. One of these files was not ac-

tually malicious but a DLL from the CPU-Z freeware

software package, which enables checking the re-

sults of CPUID on Windows, presumably used by

the malware to detect virtualization.

A significant portion of the samples in the Shad-

owServer dump were various versions of the Mul-

tiPlug adware. Via DRAKVUF a variety of temporary files were extracted for each ver-

sion before the dropper deleted them, including JavaScript, HTML, JSON and executable

83

files. To illustrate we take a closer look at one of the samples 13. This sample cre-

ated and automatically deleted two DLL’s and an executable. While the original sam-

ple had a detection ratio of 33/51, the executable 14 had only 5/49 detections, and the

64-bit DLL 15 had 10/49. Interestingly, the 32-bit version of the DLL 16 had a detection

ratio of 20/47 and was already submitted to VirusTotal. Checking for strings in the exe-

cutable immediately hint at the anti-reverse engineering technique of the sample (snippet

shown in Table 5), and reveals the developer environment: ”C:\Development\extension-

setup 2013\bin\Win32\Release\crxdrop exe.pdb”.

Another group of malware in the sample set was variants of Sisbot.A. Here we briefly

examine one particular sample of this family 17. The sample had been only identified as a

generic dropper by various AV engines with a detection ratio of 25/50, and after executing

the sample with DRAKVUF, the unpacked version was obtained from memory before it

was deleted 18. Checking VirusTotal, the unpacked executable had a detection ratio of

21/50.

The dropper also creates a shell script and a Base64 obfuscated Visual Basic script in

the temp folder, which were chain executed and then deleted. Further checking file access

we can see the malware installing itself into the Windows Startup folder as ”svchost..exe”

and also attempting to delete a file from the Startup folder, ”svchost. backup.exe”, which

wasn’t actually present on the system. These characteristics suggest the sample to be

related to the Troj/MSIL-KW malware family, analyzed by Sophos [106].

4.6.3 100k+ samples

For the second large-scale experiment we have obtained 114,319 recent malware sam-

ples captured in the time-period between January and May, 2015. In order to facilitate

automatic analysis we have altered our setup so that the malware samples were not re-

quired to be placed on the origin VMs disk before the clones were created. Furthermore,

we opted to simplify the setup by removing the VLAN NAT engine. Instead, after the VM

84

clones were instantiated, as the first step, a configuration command is injected to recon-

figure the VMs IP. For this, UAC had to be disabled to allow the command injected via a

non-admin process to succeed and avoid the UAC prompt. This has been a temporary

measure that can be addressed by injection of user-inputs, as have been successfully

shown by Dolan-Gavitt [29].

Once the IP command finished, a 5 second sleep command was performed by ping-

ing localhost, to enable the guest operating system to finalize the network settings. After-

wards, the malware sample to be executed is obtained via TFTP (alternatively, the sample

could be obtained via any other mechanism, such as NFS, Windows share, etc). The sec-

ond step has been identical to our previous experiment, a direct CreateProcessA call is

injected through a hijacked task manager process, and once the new process is sched-

uled to execute, monitoring is started on all kernel internal functions. The MAC address of

each clone in this setup remained the same, as the VLAN isolation and IP reconfiguration

has been sufficient to avoid collisions.

Out of 114,319 samples, 22,485 failed to execute via direct CreateProcessA injection.

This in effect means 80.33% success rate on the execution start. The raw output gener-

ated by the system has totaled 775 GB of data. As a portion of that execution log contains

all processes executing on the system, we further filtered this data to only lines tagged

with the executing malware’s unique CR3 value.

A subset of the samples that started showed no traces of execution with the in-

jected process’ CR3. We have observed 1,889 samples such samples. A closer ex-

amination of this group revealed that 1,294 of these samples started ntvdm.exe, which

is the Windows 16-bit Virtual Machine for legacy binaries. No execution has been ob-

served with the process’ CR3 however, thus these samples were omitted from our other

statistics. The remaining 593 samples have also been abnormal in that the injected pro-

cess’ name didn’t match that of the filename of the malware sample on disk, which has

been the most commonly observed behavior. These names included innocuous sounding

85

0q3skeaw.exe 1042585675.jpg 15416841687687 413.exe
757.exe 837.exe Acadview.exe Adobe
Acrobat. ana.exe bsIjON5.exe calc.exe
cc.exe Chome.exe chorm.exe chrome.exe
chrom.exe Claen2.exe conhost.exe crypts.exe
dllhost.exe dw20.exe dwm.exe Explore.exe
explorer.exe flashwr.exe GNU.exe google.exe
h.exe ieplorer.exe iexplore.exe IFinst27.exe
IMETIP.EXE irsetup.exe IyEptR0.exe LocalzbVGjJmk
mmuema.exe mnbalajs.exe MRX-PC.exe mstools.exe
netsh.exe njw0rm.exe notepad.exe Notepad.exe
nsissetup.exe Pluguin.exe resort.exe Resoucpack.exe
Roccketoo.exe rt.exe rundll32.exe RUN.exe
server.exe Server.exe shell32.exe stkGsk9.exe
STMG.exe svchost.exe svhost.exe system32.exe
system.exe System.exe Tempserver.exe tgzdgk.exe
toolbar.exe Trojan.exe vbc.exe vvvvv.exe
WerFault.exe windows.exe Windows.exe

Table 6: Process names with no observed execution of syscalls or heap allocations

names such as System.exe, svchost.exe and notepad.exe. Other process names

were more suspicious, such as Windows.exe or google.exe. We can also see at-

tempts at obfuscation which ultimately fail because spelling is hard, like wiindows.exe,

Resoucpack.exe, chrom.exe or Pluguin.exe. The honesty in others should also

be appreciated, as a process running as Trojan.exe or njw0rm.exe, would proba-

bly raise eyebrows. In total, we have observed 70 distinct process names, with the top

three being netsh.exe, svchost.exe and server.exe. A complete list of observed

process names for this group can be seen in Table 6.

In the samples that executed normally we have observed an average of 6,288.36 sys-

tem calls being issued, with standard deviation of 16,809.09 and a skewness of 8.76.

On average, 69.17 APIs were used, with a standard deviation of 25.04 and skewness

of -0.75. This in effect means that the majority of samples used only about 17% of the

trapped system calls. In fact, we have only observed a total of 218 system calls used,

thus 46% of the available system calls were never used. This data highlights the diverse

86

nature of system call utilization employed by modern malware, which may aid the analyst

in identifying malware families in the future.

A further breakdown of the data, seen in Figure 31, shows that 17.8% of the observed

system calls were each utilized by more then 90% of the samples. Afterwards, the sys-

tem call utilization sharply declines and we can further observe a sharp drop at 59%.

Nearly half of each observed system calls (45.8%) were observed in less then 10% of the

samples, with 35% of system calls each used by fewer then 1% of the samples.

Heap allocation requests were performed on average 1899.88 times, with a standard

deviation of 4,898.97, skewness of 44.48 and kurtosis 3,310.70. The high standard devi-

ation and skewness to the right indicates a very long tail in the distribution. An overview

of the entire distributed can be seen in Figure 32. On average, 87.79 tags were observed

per execution, with a standard deviation of 33.89 and skewness of -0.635. In total we

have observed 586 unique tags being used. The utilization of the heaptags have shown

a more diverse utilization compared to syscall utilization. Only 6.48% of the heaptags

have each been used by more then 90% of the samples, while 87.03% of the heaptags

were used by less then 50% of the samples. If we further follow the tail of distribution we

observe that 72.01% of the heaptags were used by less then 10% of the samples, and

57.5% of all heaptags were observed in fewer then 1% of the samples. Based on this

data it is reasonable to assert that highly differential behavior can be observed through

the use of kernel heap tags, which could be used for effective malware classification and

identification in the future.

In terms of file accesses, we have observed the executing samples interacting on

average with 70.17 files and/or folders, with a standard deviation of 93.6 and skewness

of 7.99. In terms of total file accesses observed on the entire virtual machine, we have

observed 256.05 files on average, with a standard deviation of 246.46 and skewness of

3.73. On average, 0.82 files were deleted with a standard deviation of 1.69 and skewness

of 5.41. These deleted files were further captured by carving them from memory and file-

87

Fi
gu

re
31

:
D

is
tr

ib
ut

io
n

of
ob

se
rv

ed
sy

sc
al

ls
us

ed
by

pe
rc

en
to

fm
al

w
ar

e
sa

m
pl

es

88

Fi
gu

re
32

:
D

is
tr

ib
ut

io
n

of
ob

se
rv

ed
he

ap
al

lo
ca

tio
ns

us
ed

by
pe

rc
en

to
fm

al
w

ar
e

sa
m

pl
es

89

Figure 33: Top 10 most commonly deleted files by type

Figure 34: Top 10 most commonly deleted files by type, larger then 10KB

Figure 35: Types of executables dumped

90

type analysis revealed that 37 different types of files were deleted. The types of the most

commonly deleted files are shown in Figure 33. A significant number of the deleted files

were of type ASCII and were smaller then 10KB, thus another breakdown is shown for the

most common file types where the files were larger then 10KB in Figure 34. We further

evaluated the types of PE32 executables that were deleted during the analysis session,

with the result seen in Figure 35.

ability-counter.com accident-muscle.com
airportwake-money.com ambition-lawyer.com
art-spite-tune.com assignmentrent.com
attempttune-temperature.com beachloose-appeal.com
bedwater-spite.com bicyclereply.com
bite-team-indication.com black-meet-fat.com
bone-twist-swimming.com brain-recommend.com

Table 7: DNS record lookups of type NS

Requests TLD Requests TLD Requests TLD Requests TLD
472 com 82 net 52 ru 47 biz

45 org 32 info 14 it 8 me
8 fr 8 de 7 cn 6 xyz
5 jp 4 br 3 pl 3 es
3 cc 2 kr 2 im 2 co
2 ca 1 website 1 vn 1 us
1 uk 1 tv 1 tt 1 rocks
1 link 1 hk 1 cm 1 club
1 ch 1 am

Table 8: Top level domain names recorded in the DNS requests

In this experiment the executing malware samples had only restricted network con-

nectivity with no incoming or outgoing connections allowed. The analysis VMs how-

ever had been configured with a DNS server IP that was proxying DNS requests via

dnschef, so each DNS request was logged. It is possible that some malware may re-

configure this DNS setting thus all DNS logs may not be comprehensive. Not counting

standard DNS requests performed by Windows to domains such as *.microsoft.com,

*.msftncsi.com, *.windows.com and *.windowsupdate.com we have observed

91

a total of 4795 DNS requests. In total 822 unique records were requested, with 808 being

type ’A’ record, and 14 were of type ’NS’, shown in Table 7. Some of these domains are

not yet registered at the time of writing, or were only registered months after the records

were collected. In total 34 unique top-level domain names were observed, as can be seen

in Table 8, with the full list of domains shown in Table in the Appendix.

4.6.4 Stalling code

A critical limitation of dynamic malware analysis systems is time. When a malware binary

is run through the system, it is unknown how long it has to be executed before it’s mali-

cious behavior is observed. This problem has been reduced to the halting-problem [100],

thus it is generally believed to be undecidable. Recent work on the topic raised some

glimmer of hope that it may not be the case if time and resource constraints are taken into

considering [15], for all practical purposes today it is still undecidable.

This presents an easy opportunity for malware to avoid detection with minimal effort,

as dynamic analysis systems can’t execute the sample indefinitely. Most execute them

only for a couple minutes at most. In our experiments we have chosen execution times

of 1-2minutes at most. Thus, if the malware can wait out the analysis period before

activating, the analysis won’t be effective. On the other hand, stalling may also be a

risky strategy for malware when infecting live systems, as it provides an opportunity for

AntiVirus systems to detect and remove the process before it is able to deploy it’s more

advanced payloads.

This problem has of coursed been long known by the creators of analysis systems.

For example, Kolbitsch et al. [65] described various stalling techniques that were tar-

geted against their emulation-based analysis system. In their experiments they observed

malware attempting to execute instructions that were known to execute slower under em-

ulation then on real hardware. While they were able to counter some of these techniques

by detecting the stalling loops by creating control flow graphs, such an approach is not

92

viable under full system virtualization as we are not observing every instruction of execu-

tion. This type of stalling may not necessarily be applicable to analysis systems relying

on hardware virtualization, as instruction can execute natively on the CPU without much

overhead. It has also been observed that malware may abuse the logging overhead as-

sociated with trapping system calls. For example, malware may choose to rapidly call

system calls that normally exit fast (like NTCREATESEMAPHORE, or invalid syscalls), but

under monitoring they incur the full overhead of logging. While certainly a valid approach,

these methods are increasingly noisy, and thus the risk of detection is higher.

In practice many malware sample resorts to simple environment checks to detect the

presence of debuggers or other applications that are usual signs of an analysis platform.

We have seen such checks during our tests, as shown in Table 5. Another easy check

malware can perform is to check the system uptime before executing, as many dynamic

malware analysis platforms require new VMs to be booted form scratch for each analysis

session. As our monitor tool runs outside the monitored OS, and can be snapshotted after

letting it run for an arbitrary time, such environment checks are easily defeated.

Another behavior observed is malware simply sleeping for a while before starting its

execution. Provided the first stage payload of the malware that performs the stalling

is benign enough, it could effectively bypass AntiVirus systems. To counter such at-

tempts the open-source Cuckoo sandbox for example monitors and alters all calls to

NtDelayExecution and NtQuerySystemTime to skip such sleep attempts.

Based on these finding it is reasonable to formulate the following two hypothesis:

1. Samples performing anti-sandbox behavior via fast syscalls will exhibit a lower uti-

lization of available syscalls as the malware will continuously ”spin” these syscalls

to time the sandbox out.

2. Samples that perform stalling by sleeping will exhibit lower overall execution of

syscalls as compared to normally executing samples as the malware will be in a

sleep state and executing no instructions.

93

To test the first hypothesis we filtered the data for all samples that have used the

NtCreateSemaphore syscall and calculated the average number of API’s used by these

samples. What we actually observe is that samples using this syscall exhibit an over-

all higher then average number of syscalls being used: 85.32 vs 69.17. Furthermore,

the standard deviation of this group is also lower, 15.3 as compared to the 25.04 ob-

served with all samples included. Thus the simple case of the syscall being used does

not validate the hypothesis. We can further filter the sample set by checking whether

the samples exhibiting higher then average usage of this syscall match the hypothesis.

NtCreateSemaphore on verage has been issued 7.77 times and has been observed in

45,383 sample. The above average sample set is 23,022 samples. In this set, we can ob-

serve an even higher average syscall utilization: 91.47 with a standard deviation of 15.48.

Thus, in the case of this particular syscall, we can observe no evidence of it being used

as sandbox stalling mechanism on a large scale.

If we further check the usage of NtCreateSemaphore by samples, we observe one

sample 19 that has used this syscall well above the average: 17,453 times. In comparison,

the sample using this syscall the second-most time has issued it only 44 times. This

sample indeed shows lower then average utilization of available system calls, with only 61

syscalls used. When we submitted this sample to the online service malwr.com, it has

also identified the sample as attempting to delay the execution of the analysis task, but it

has identified this attempt based on a request to sleep for 2,088,812 seconds [79].

As our current prototype has not been capturing syscall arguments, the most straight

forward check to detect a sleeping malware is not possible based on our current logs. For

example, in the malware sample discussed above, a long sleep request would be a clear

indication of a stalling malware. Nevertheless, the second hypothesis should arguably

still hold if the malware successfully sleeps. In Figure 36 and Figure 37 we can see the

distribution of samples that used either NtDelayExecution or NtQuerySystemTime. The

data is further contrasted with the samples that have never issued these calls. Based on

94

Figure 36: Distribution of samples based on its usage of NtDelayExecution

Figure 37: Distribution of samples based on its usage of NtQuerySystemTime

95

these results we actually see the opposite of what would have been expected if malware

sleeps when these syscalls are used: malware not using these syscalls on average show

a lower execution rate then those malware that do use it. This ratio flips only when the

ration goes above 10% of syscalls being issued by the malware samples. However, when

more then 10% of all syscalls are being issued by the malware sample, it is arguably

harder to label the sample as sleep-stalling.

4.6.5 Measuring overhead and throughput

In this section, we turn our attention to measuring the overhead of our system, a standard

metric calculated for any monitoring engine, and to measuring the effective throughput we

achieved.

To illustrate the source of the overhead in our system, we measured how many VMEX-

ITs are triggered by our monitoring when all internal kernel functions are trapped. By us-

ing the debug symbols for the Windows 7 SP1 kernel all 10,853 internal functions for x86,

and 11,011 functions for x86 64 were trapped. The traps were further protected with EPT

execute-only permissions, which on x86 resulted in trapping 727 pages, and 915 pages

on x86 64, respectively. The VM was unpaused for 60 seconds and was running idle with

only the default Windows system processes being active. As we can see in Figure 29,

breakpoints were the main source of VMEXITs we triggered in the VM for both versions

of Windows.

Also worth noting that no write events were observed within this time period. The

experiment was repeated with trapping functions found in ntdll.dll, consisting of 2,196

functions on 103 pages for x86, and 2,263 functions on 133 pages for x86 64. The results

were similar as the ones we seen for the kernel, the #BP traps were by far the majority

of source of VMEXITs. From these benchmarks it is clear that the overhead on x86 is

larger than on x86 64 For example, only 3,970 Read EPT violations were observed on

the ntdll.dll pages.

96

It is worth highlighting that the experiments consisted of trapping all internal kernel

functions, thus performance could be improved by selectively placing traps at locations

deemed of particular value, reducing the number of #BPs and the number of pages that

are trapped. To illustrate how selective trapping affects monitoring we choose to further

benchmark the responsiveness of the VM using the iperf network performance testing

tool. In this test, Windows 7 SP1 x64 had an emulated Intel E1000 network device at-

tached. With no traps injected, the throughput measured in 10 seconds was 943 Mbit/s.

When all 11,011 internal kernel functions were trapped performance dropped to 0.34

Mbit/s, a noticeable slowdown. However, when we trapped only those kernel functions

starting with Nt, which are the functions available through system calls and listed in the

System Service Dispatch Table (SSDT), the performance was 432 Mbit/s.

While the overhead thus added is still more than 50%, this overhead doesn’t interfere

with the execution of the sample even if it maintains connections to external nodes outside

DRAKVUF as the uplink bandwidth of the physical network itself is only 100 Mbit/s. In

case such monitoring was to be deployed on production systems however a more selec-

tive monitoring approach would have to be chosen as to minimize overhead.

To measure the overhead in terms of CPU cycles by the VMEXITs caused by #BP

injection, we performed a benchmark similar to that in SPIDER [23]. The test consisted

of the monitored domain calling a function within a loop where the function increments

a counter. The loop iterates from 104 to 106 with a step value of 104. Timing information

was collected by reading the Time-stamp counter (TSC) register before and after the

loop. The benchmark was performed with and without trapping at the function entry point

to determine the overhead. The overhead thus measured was on average a factor of

10502, which is comparable to the overhead in SPIDER. The difference in the overhead

likely arises from using different hypervisors, Xen in DRAKVUF and KVM in SPIDER

respectively, as by design Xen requires an extra VMENTRY/VMEXIT for each trap that is

forwarded to the control domain.

97

Figure 38: Relation between the overhead and the number of #BP hit.

While calculating overhead this way is a standard and informative metric used to eval-

uate malware analysis systems, in the context of malware analysis the fact that a malware

sample’s execution speed is degraded is only relevant in case such a degradation actively

interferes with or alters the malware’s execution. In other words, overhead on a per sam-

ple base is mainly a stealth concern for dynamic malware analysis. In our opinion the

performance of a malware analysis system is more realistically measured by determining

how many concurrent analysis sessions can be executed simultaneously given specific

hardware constraints, as shown by for example Paul Royal [99].

From a scalability perspective the throughput of the system is of particular importance,

which we further evaluated based on the experiments described in Section 4.6.2. The

main hardware constraint in our system was the amount of available RAM: 16 GB. Con-

sidering the standard 2 GB of RAM recommended for running Windows 7, the maximum

number of concurrent sessions with existing open source tools [14] would be limited to 8

sessions (not counting memory allocated for the control domain). In our first set of exper-

98

iments, discussed in Section 4.6.2, we achieved on average an effective memory saving

of 62.4% by using copy-on-write memory, with a standard deviation of 7.3%. Projecting

the memory savings as concurrent sessions, shown in Figure 30, we can see the imme-

diate memory savings that can be achieved via CoW memory (the area shown in black).

In our case, the number of concurrent analysis sessions has improved by a factor of two,

already a significant improvement in throughput. In the second, larger scale experiment

described in Section 4.6.3, we observed that on average 77% of RAM remained shared

with a standard deviation of 4.49%. Thus, based on this sample set, on average we could

overcommit RAM to 4x the number of VMs. This second experiment was also performed

with concurrent analysis sessions, in two phases. In the first phase, the max concurrency

level was set to a maximum of 4 VMs. These results further strengthen our projected

overcommit capabilities deduced from the malware collection experiments, discussed in

Section 3.3.4.

4.7 Summary

As these experiments prominently show, hardware virtualization offers a variety of prop-

erties which can be used to great effect when developing malware analysis tools. The

tools we developed have highligthed during live experiments that using hardware virtual-

ization based analysis effectively allows us to peek into the behavior of modern malware.

Using our collection techniques we have gained valuable insight into previously unknown

behaviors. Furthermore, using the aggregate data generated during our extensive exper-

iments we had obtained a general overview of the current malware landscape, which can

further aid analysts in better focusing their efforts. To reflect on our core objectives, we

summarize our findings in the following.

(O1) Scalability: Our tests performed with live malware allowed us to effectively evalu-

ate how copy-on-write disk and memory techniques cope with this use-case. Our

experiments have prominently showed that significant improvements are possible

99

via this technique. Nevertheless, as we have seen during our malware collection

tests as well, the benefits rapidly decrease the longer the analysis sessions are ac-

tive. Future work should explore the possibility of performing continuous memory

deduplication to preserve the benefits achieved herein.

(O2) Stealth: The techniques implemented and deployed in our experiments have suc-

cessfully shown that hardware virtualization can be effectively used for steathy mal-

ware analysis. By addressing the hitherto overlooked problem of starting the mal-

ware sample without leaving a trace successfully greatly increased the stealthiness

of such systems.

(O3) Fidelity: We have demonstrated how a wide variety of information can be obtained

from the executing virtual machine purely with the use of out-of-band introspection

tools. In our prototypes we have been able to implement standard data collection

techniques previously applied or proposed, such as system call interception, kernel

heap monitoring and file extraction. The breadth and depth of the data we collected

highlights how hardware virtualization is a flexible technique allowing the monitoring

of highly varied types of behaviors. This breadth of information captured greatly

increases the visibility into the behavior of modern malware.

(O4) Isolation: Improving upon our disaggregated design, we have greatly reduced the

attack surface of our analysis system by moving the data-collection tools into de-

privileged secondary control domains. Furthermore, the combined use of virtual

switching technology with our external injection tool allows unprecedented flexibility

and ease in deploying such systems, without sacrificing stealth in the process.

100

5 Hardware and Software limitations

During our investigation into hardware virtualization as a platform to build security tools,

several hardware and software limitations were encountered. In the following chapter we

provide a summary of our findings which need to be considered when building such appli-

cations. First, we highlight the inherent limitations of our execution monitoring approach

introduced in Chapter 4. Afterwards, we revisit subversion attacks proposed in the past

for VMI applications and evaluate their prevalence on modern hardware. Finally, we take

a look at the most privileged operation modes found on modern CPUs and how these

may affect future development directions.

5.1 Evading monitoring

In the current implementation of our prototypes, as described in Section 4.5, monitoring

the malware’s execution is performed by trapping internal kernel functions correspond-

ing to system calls. This monitoring is performed by overwriting the kernel function entry

points with the software breakpoint instruction, 0xCC. Furthermore, the kernel heap allo-

cation and deallocation routines are trapped to monitor critical datastructure placements

on the OS’s heap. While this tactic is effective against DKOM attacks, as discussed in

Section 4.5.1, it would not be enough to overcome other types of attacks.

In our implementation monitoring starts on a clean system, thus we have a reasonable

trust in the initial reconstruction of the OS’s state. However, as the malware infestation is

performed, a kernel-mode rootkit could break the assumption our monitoring is based on.

Hooking the system call table has been a standard rootkit technique to redirect critical

system calls to attacker-controlled functions to perform stealthy monitoring and filtering of

the data going through the system call. Similar hooking can be performed on the IDT and

GDT as well. In the prototype implementation of our malware analysis tool we have not

implemented any additional protection and monitoring mechanism to detect such hooking

101

behavior. There are no technical reasons why such monitoring cannot be implemented,

it has simply been out-of-scope for our initial prototype. Placing EPT write-notification

events on the critical system tables would immediately alert the external monitor to such

hooking behavior. Furthermore, once the hooks are placed, the external monitor could

further trap the new location of the functions and log when the hooks are executed.

Once a rootkit is thus placed itself inline of the systems execution, the level of trust

in the data collected decreases. A rootkit can theoretically implement many of the OS’s

standard functionality on its own, thus avoiding our monitoring which relies on the malware

making use of the original OS for its functioning. For example, a rootkit could implement

its own heap allocation and memory management routines, thus avoiding going through

the standard - and monitored - OS heap allocator. However, the more functions the rootkit

implements such a way, the larger its size becomes, which may be a limiting factor in how

far the malware authors would be willing to go. Another possibility a rootkit could do is to

make use of the standard functions, but instead of executing the functions at their proper

entry points, implementing the first couple instructions on its own, then jumping into the

function further into the code then the entry point. Since our monitoring hooks are placed

only at the function entry point, the rootkit would successfully avoid our monitor while also

limiting its binary size. It is thus necessary to stress the point that while our prototype is

capable of monitoring kernel level rootkits as well, the level of trust in the collected data

can be impacted by rootkits.

Nevertheless, it is still possible to develop routines to counter such rootkits in a trans-

parent and automated way. For example, after the installation of a kernel-mode rootkit

is detected, we are able to determine where the rootkit’s code is located by following the

hooks placed in the OS. Once the infected memory space is identified, the external mon-

itor could switch monitoring from the breakpoint-based, low-overhead monitor, to the fully

EPT based monitoring. The benefit of the EPT based monitoring would be that full execu-

tion trace of the rootkit can be collected, without it being able to jump over monitor points.

102

Using this monitoring technique, we would be able to detect if the rootkit is attempting to

jump over monitor hooks. We anticipate this to be an on-going arms-race where malware

authors come up with ever more exotic execution paths to avoid and confuse automated

monitoring, such as data-only rootkits [118].

5.2 Attacks via the TLB

Figure 39: Overview of the split and tagged TLB architecture.

As V2P address translation is expensive, even with hardware acceleration available,

modern CPUs maintain a transparent cache to store the translation results called the

Translation Lookaside Buffer (TLB). To further improve performance, Intel implemented a

split TLB architecture which separates the cache into two disjoint sets. The iTLB stores

translations for instruction fetches and the dTLB stores translations for data fetches. In

newer CPUs, Intel added a secondary cache called the sTLB, which stores the evicted

entries from both the iTLB or dTLB to offer even faster address resolution. An overview of

the TLB system is shown on Figure 39.

The split TLB architecture has been used both for defense and offense. The first

system to make use of the split TLB was GRSecurity’s PAGEEXEC feature in which they

103

tackled the problem of marking a page non-executable without explicit hardware support

for it (like the NX-bit in later CPUs) [46]. In recent years it has also been proposed and

used in similar fashion to ensure the integrity of code which resides on pages that mix

code and data segments [96,112].

Input: Splitting Page Address (addr),
Pagetable Entry for addr (pte)
1. invalidate instr tlb (pte);
2. pte = the shadow code page (addr);
3. mark global (pte);
4. reload instr tlb (pte);
5. pte = the orig code page (addr);

Table 9: TLB poising algorithm as described by [6].

From an offensive perspective, the Shadow Walker rootkit leveraged this architecture

for stealth purposes [107]. The rootkit took advantage of the fact that a virtual address

can point to different physical addresses based on which TLB is utilized. In such a split,

the rootkit’s code can safely execute without antivirus software being able to scan its code

pages [130]. To further make the rootkit more persistent against TLB flushes, the rootkit’s

code pages are also marked as global. The algorithm to perform this TLB poisoning is

shown in Table 9. The poisoned global pages can only be flushed if the TLB is full and

the entry is evicted by the hardware, or by turning off and on the Page Global Enabled

(PGE) bit on the CR4 register. For example, Windows 7 actively and frequently flushes

the global pages from the TLB and disabling the routine leads to a system crash almost

immediately. This behavior effectively limits the life-time of the poisoned TLB. Linux on

the other hand does not perform any such TLB flushes, making it a more potent target for

TLB poisoning.

In recent Intel CPUs (Nehalem and newer), a secondary victim-cache has been added

to the Intel architecture: the sTLB. The sTLB holds all entries which are evicted from

either the iTLB or the dTLB, and in the event of a TLB-miss, the sTLB is checked before

the system performs a real address translation. This further complicates the development

104

of stealthy rootkits, as the sTLB can only hold one version of the evicted TLB entries. This

in effect synchronizes the split-TLB without triggering a pagetable lookup. Thus, a rootkit

leveraging the split-TLB technique is now unreliable, as its custom #PF handler code is

not invoked to re-split the TLB. This leads to either a non-hidden rootkit code-page if the

iTLB entry is brought back from the sTLB, or a system crash / infinite loop if the dTLB

entry is brought back and is being accessed as if it was code.

As such, malicious code running within the guest on modern Intel hardware is unable

to leverage the split-TLB for hiding malicious code from other applications running within

the guest. However, with a little help from the VMM, the behavior of the CPU can be

adjusted to skip entries being evicted into the sTLB. Unlike regular page-table entries,

EPT entries allow setting a page to execute-only; that is, it can be accessed only by

code-fetching. When the CPU detects that the iTLB and dTLB have different EPT per-

missions (one with R/W for data and the other with X only for code), evicted entries skip

the sTLB [113]. Thus, if the in-guest TLB-split routine is created by or in coordination with

the VMM, the sTLB can be by-passed so that the address translation goes through the

primed page-tables again and effectively enabling the Shadow Walker technique.

On the ARM platform, similarly to Intel, a separate iTLB and dTLB is maintained, while

the virtualization extensions also offer TLB tagging akin to VPID. However, there is no

sTLB present to potentially synchronize a split-TLB setup. Another important difference

between the Intel and ARM architecture is that while on Intel it is not impossible to perform

stage-1 only translation (GVA to GPA), the ARM instruction set provides such facilities.

Thus, an external observer can repeat the translation in the context of the virtual machine

such that the lookup also queries the TLB. In effect, even if the pagetables no longer

represent the cached translation, the external observer can receive the de-facto used

translation result. By further performing a software-based pagetable lookup the external

observer can further determine if the TLB entries our out if sync with the pagetables. The

only limitation with this hardware based lookup method is that it performs the lookup as a

105

data-fetch access - thus only allowing one to obtain the cached dTLB entry. In case the

iTLB is poisoned with the pagetables no longer representing the cached translation, it is

impossible for an external entity to recover the in-use instruction-fetch address. This is a

particularly dire limitations, as the second-stage translation faults only report the

glsgva to the hypervisor. Thus in effect it is impossible to tell what instructions the guest

is actually executing in case the iTLB is poisoned.

5.2.1 The effects of tagged TLB

In the first implementations of Intel VT-x, the TLB entries were completely flushed dur-

ing VMENTRY and VMEXIT operations. As a side-effect, this provided a good security

counter-measure to a Shadow Walker style TLB technique for hiding in the guest. With

newer VT-x implementation, the concept of the tagged TLB has been added to Intel,

dubbed Virtual Processor Identification (VPID). With VPID, the hardware does not flush

TLB entries during VMENTRY and VMEXIT. This is accomplished by a new field in the

VMCS which the CPU can now use to distinguish between VMs based on the assigned

tag. This naturally results in significant performance boosts on modern hardware.

In a footnote Bahram et al. [6] speculated that with tagged TLB being available, hid-

ing in the TLB will reemerge as a method of achieving stealth against VMI applications.

However, at the time no hardware was available with tagged TLB support to test their

proposal. In contrast, nowadays most modern Intel CPUs have both the sTLB and the

VPID feature. As we already discussed, the introduction of the sTLB already affects how

TLB-splitting can be performed, which consequently diminishes the utility of the split-TLB

as a technique to hide malicious code in a guest. However, hiding from VMI doesn’t nec-

essarily require malicious code to use a split TLB. For VMI applications, the TLB itself can

be a problem, as VMI always emulates address translation in software using the in-guest

page tables. Any translation cached in the TLB that is no longer reflected in the page

tables is effectively invisible to external monitors. In the following, we aim to highlight the

106

different VPID implementations available in modern open-source hypervisors to highlight

how these implementations affect VMI applications.

The Intel VPID is a 16-bit field included in the VMCS for each vCPU. The assignment

of tags is left to the hypervisor with the exception being that tag 0 is a magic tag spec-

ifying the VMM. The tagged TLB entries can be flushed by specifying the tag, flushing

all tagged entries, or assigning a new tag to the vCPU so the hardware will eventually

evict the stale tags. While the description of the tagged TLB is straight forward, the actual

implementation in open-source hypervisors varies greatly.

Xen implemented the VPID as a round-robin counter, where a tag is assigned in

the VMCS simply by incrementing the counter. When an overflow occurs, all TLBs are

flushed, and the iteration restarts at 1. During regular operations, the tagged TLBs are

never flushed, instead a new VPID is assigned to the vCPU. As the comment describes

it in the Xen source: ”Each time the guest’s virtual address space changes (e.g. due to

an INVLPG, MOV-TO-CR3, CR4 operation), instead of flushing the TLB, a new [VPID] is

assigned. This reduces the number of TLB flushes to at most 1/#[VPID]s. The biggest ad-

vantage is that hot parts of the hypervisor’s code and data retain in the TLB”. However, on

a closer look at the source we see that the comment is only partially true: the VPID does

not get invalidated on MOV-TO-CR4. Additionally, with new VPIDs being assigned on

MOV-TO-CR3, the hypervisor effectively disables the guest’s ability to use global pages.

If we recall, the purpose of having global pages is to make the TLB entries survive

a MOV-TO-CR3 so that the translation can be shared across processes. On Xen, the

hardware won’t be able to utilize global TLB entries as the VPID tag of the global page

is stale after the context switch. As a side-effect, the TLB priming would have to be

performed on every context switch. On KVM the VPID implementation is done by using a

bitfield. When KVM creates a new vCPU structure, the first unused bit is reserved to this

vCPU. As a peculiar decision, the tag is assigned even to vCPUs that never execute; that

is, it is assigned during the creation of the vCPU, not during the first VMENTRY. When

107

the VMM runs out of available tags to assign, it simply disables VPID in the VMCS. This

implementation means KVM guests can prime the TLB with global pages without having

to perform this operation on every context switch.

5.3 Limitations of the EPT

In the following section we take a closer look at the EPTs from a VMI tracing perspective.

We briefly introduce the extension and how it is used for great effect in various VMI appli-

cations. Afterwards we turn our attention to the limitations of the extension and discuss

various pitfalls that need to be taken into consideration when building security applications

relying on the extension. While these limitations do not automatically break VMI applica-

tions, without proper handling they could lead to subversion attacks. While developing

real-world security applications the authors have encountered these limitations.

5.3.1 Catching modifications

Now that we have a brief overview of how EPT violations can be used to trace memory

accesses performed by a VM, we aim to highlight the limitations of EPT through some

examples. While the limitations are not necessarily prohibitive, without proper consider-

ation while developing security applications, they can result in a knowledgeable in-guest

attacker hiding from ’naive’ protection schemes.

DKOM attacks are a well-known way of breaking both forensic memory analysis (FMA)

and VMI tools. DKOM works by modifying data-structures in the kernel’s heap. The

classic example of this is by hiding a malicious process by unhooking its data-structure

from the linked-list that the OS uses to report active processes to tools such as ps. As the

linked-list is a non-critical and independent structure from what the OS uses to schedule

processes, this type of DKOM attack breaks the assumption that the list is well maintained

and accurately describes the list of active processes.

In the context of detection of unhooked processes, a security application can trace

108

Figure 40: The critical memory region at which EPT violations may occur that could mean
an access to the protected region (void *next).

when updates are made to the linked list via the EPT. This is done by checking the vio-

lation information contained in the VMCS to see whether it is at the offset of the pointers

next and prev, as a security application has direct knowledge of the updates made to

the linked-list. Such an approach may seem straightforward because during normal op-

erations the offset at which the violation is reported matches the location of the pointers.

That is, the operating system updates the pointers directly. However, a critical limitation in

the way the hardware reports EPT violations needs to be taken into consideration in this

scenario. During an EPT violation, the CPU only records the starting address where the

violation occurred on the monitored page. However, the violation may involve a read/write

operation up to 8-bytes. This short-coming is known by Intel, as they already patented

the solution [114]. As such it may be the case that some future CPUs will provide this

information as well.

If an attacker knows that only the exact addresses are going to set off an alarm and the

rest are filtered as unrelated violations, it then becomes possible to perform a successful

DKOM or other attack. The only task is to break the assumption that the violation will be

at exactly the pointer locations. Figure 40 highlights the entire critical memory region that

security applications looking for EPT violations need to consider. For example, overwriting

the pointers in two steps could perform the attack: first, write 8-bytes starting at (N-1);

second, write 1-byte starting at (N+7). The DKOM attack will still trigger VMEXITs, but

our naive protection scheme would disregard the violations as unrelated write-events.

This limitation has to be kept in mind when building systems against memory disclosure

109

based attacks, such as in HeisenByte [111]. In this system Tang et al. proposed using

EPT to catch when code is being read to construct return-oriented-programming (ROP)

gadgets, and subsequently destroying the code to prevent it being used. While the authors

note that the code destruction can be extended to arbitrary lengths, in their prototype

implementation they have limited it to a single byte, potentially exposing up to 7-bytes per

read for code-reuse attacks.

5.3.2 Catching data-leaks

Now we will turn our attention to another potential security feature that EPT could be

used for: data-leak prevention. In data-leak prevention systems, it is crucial that specific

memory locations are accessed only under certain circumstances. An external secu-

rity application can potentially use EPT’s read protection to enforce a mandatory access

control system. The limitation described in the previous section is applicable under this

scenario as well. However, EPT has another crucial limitation which could be utilized to

siphon protected data without triggering an alert.

The limitation is in how EPT violations are reported when a read-modify-write (r-m-w)

instruction is executed. According to the Intel manual: ”An EPT violation that occurs

during as a result of execution of a read-modify-write operation sets bit 1 (data write).

Whether it also sets bit 0 (data read) is implementation-specific and, for a given imple-

mentation, may differ for different kinds of read-modify-write operations” [56]. The impli-

cations of this behavior are apparent: any memory event subscriber solely looking for read

EPT violations as the trigger for enforcing an access control system can be subverted by

employing r-m-w operations instead to access the data.

Despite the fact that such unpredictable behavior surrounds these operations, current

hypervisors make no attempt in mitigating it in software. For example, up until recently Xen

simply forwarded the violation information from the hardware to memory event subscriber

applications. Only with our recent patch does Xen mask the hardware limitation from

110

applications by unconditionally marking all write violations also as read violations.

5.3.3 Virtual DMA and emulation

Thus far we have looked at the hardware limitations of using EPT and its effects on VMI

application. In the following we discuss two more scenarios where EPT protected memory

regions can be accessed without triggering EPT violations, based on a recent discussion

thread on the xen-devel mailinglist [70].

In modern virtualization environments device emulation is a critical component in al-

lowing off-the-shelf operating systems to run without requiring it to be virtualization-aware.

For example, Xen uses QEMU to provide various emulated device backends for Windows

(or Linux) virtual machines, such as VGA, disk, and network devices. Device emulation

however is known to be complex and error-prone, thus being a fertile ground for vari-

ous exploits. For example, it has been used in the past for breaking out KVM virtual

machines [37].

As to mitigate the risk involved in running the QEMU instance in the Trusted Computing

Base (TCB), Xen introduced the concept of stub-domains, where the QEMU instance

is running in a light-weight paravirtual VM next to the main VM it provides emulation

for. Thus, even if an attacker breaks out of the VM via the emulated devices, it only

gains access to another de-privileged VM. Nevertheless, such break-outs are not without

consequence from a VMI perspective.

On Xen, even the de-privileged QEMU stub-domain requires Direct Memory Access

(DMA) into the main VM in order to provide the I/O emulation it is tasked with. In a

hypothetical break-out where an attacker successfully compromised the QEMU stub, the

DMA functionality can be used to by-pass any type of EPT traps set on the main domain.

That is because the stub can request any memory page of the main VM to be mapped into

its own address space by the hypervisor. However, the stub being a paravirtual domain,

does not use EPT to access the same memory.

111

Similar problems can be potentially found with the emulated interrupts and timers. For

performance and scalability reasons with many-vcpu guests, Xen provides a fast-path

emulation for a variety of interrupts and timers, such as RTC, PIT, HPET, PMTimer, PIC,

IOAPIC, and LAPIC. Since the emulation happens within the hypervisor, any updates to

pages with EPT traps, that happen as a result of emulation, avoid triggering these traps.

5.4 Layers below the hypervisor

In recent years there has been a number of attempts to move VMI applications to a layer

below the hypervisor, namely the SMM and the TrustZone. However, these layers present

particular challenges for VMI applications, especially when faced with non-cooperating or

malicious VMMs. In the following we present a quick overview of these CPU layers and

discuss potential problems in utilizing these modes as a platform for VMI. Fundamentally,

both the SMM and TrustZone share similar characteristics in that these CPU execution

modes co-exist with the VMM and VM execution modes. Similar to how the VMM is a

more privileged execution mode then the VM mode, the SMM/TrustZone is yet another

layer more privileged then the VMM.

5.4.1 ARM TrustZone

The ARM TrustZone execution mode is an ARM specific mode designed to provide an

isolated enclave for sensitive applications to operate in. The main design principle behind

TrustZone has been that an application running in normal mode - be it the VMM or an

application within a VM - can request the sensitive operation to be performed by a process

within the TrustZone, which would provide protection to sensitive data, such as encryption

keys or passwords. The scheduling of the TrustZone relies on two mechanisms: execution

of the Secure Monitor Call (SMC) instruction; or alternatively the pre-configured trapping

of certain interrupts directly to the TrustZone.

When executing in the TrustZone, the CPU has access to all memory within the sys-

112

tem, thus performing VMI from the TrustZone is possible, thus two of the main VMI re-

quirements are readily met: Isolation and Interpretation. To achieve effective Interposition

the TrustZone based VMI system can rely on the re-routed interrupts as a mechanism

to evaluate the system state, albeit it potentially resulting in significant overhead. Alter-

natively, the TrustZone based system could achieve interposition by the injection of SMC

instructions into target code locations, as also proposed by the SPROBES systems [44],

and also by Samsung [5].

A non-cooperative VMM can pose particular problems when attempting to use the

SMC injection mechanisms, as SMC is trappable by the hypervisor as well. In such a

case, the TrustZone would not be notified of the SMC being triggered in a target VM if

the VMM decides to forgo forwarding such events. Furthermore, the SMC can only be

triggered from the guest operating system, thus it is not possible to trace the execution of

user-mode code directly via this method.

The non-cooperative VMM scenario could be overcome by injecting a trampoline SMC

into the SMC handling routine within the VMM. This in effect would force the VMM to trig-

ger the TrustZone whenever an in-guest SMC instruction has been trapped. The VMM

could still attempt to detect if it’s SMC handler has been trapped in such a way, and sub-

sequently remove those traps. Provided that the TrustZone is always in a more-privileged

mode, as long as some interrupts trigger the execution of the TrustZone, the traps can

always be reinserted periodically. This further highlights the implications if we consider

the opposite setup, where a malicious entitity has been able to establish a foothold in the

TrustZone. In such a case, normal oeprating modes would have no recourse to protect

themselve from the TrustZone based malware, thus VMM based security solution would

be susceptible to subversion attacks.

113

Figure 41: Overview of relationship between SMM, VMM, and VM.

5.4.2 System Management Mode

The SMM, according to the Intel manual [56], was designed to provide an alternative,

transparent operating environment to chipset manufacturers and BIOS vendors. This

mode can be used to monitor and manage various critical system resources for more

efficient energy usage, control system hardware, and respond to thermal emergencies

in the event of a non-responsive OS. It is highly privileged and cannot be interrupted by

regular interrupts (including non-maskable interrupts), thus guaranteeing the execution

of the SMM code once it is triggered. Furthermore, code running within the SMM has

full access to the system and can perform arbitrary modifications to the system RAM. In

recent years the SMM has received considerable attention from security researchers; for

example, it has been shown that SMM could be used to implement stealthy rootkits [108,

125], VMM integrity verification systems [101,122] and full-scale VMI applications [134].

In order to trigger the execution of code within the SMM, a System Management In-

terrupt (SMI) is issued via the local Advanced Programmable Interrupt Controller (APIC)

or via the SMI# pin. In practice the APIC method is the preferred trigger mechanism as

the SMI# pin requires extra hardware to be attached [22]. When the interrupt is received,

the active CPU context is saved into a dedicated memory region, known as System-

Management RAM (SMRAM). The chipset can be configured to trigger an SMI on a multi-

114

tude of possible events, from USB activity, writes to certain I/O ports, thermal events, and

even periodically [123]. When the SMI handler finishes executing, the previous interrupted

operating mode is restored from the snapshot that was saved into SMRAM. An overview

of this operation is shown in Figure 41 with the dotted lines. While the SMI handler can

modify the CPU register values that were saved, the CPU always returns to the same

operating mode that was active when the SMI was received: VMX root or VMX non-root.

As pointed out by Jain et al. [57]: ”A limitation of any SMM-based solution [...] is that

a malicious hypervisor could block SMI interrupts on every CPU in the APIC, effectively

starving the introspection tool. For VMI, trusting the hypervisor is not a problem, but

the hardware isolation from the hypervisor is incomplete.” While it is true that the VMM

could starve the SMM in such a way, the SMM is capable of modifying the VMM’s code

to remove such code-paths as long as some SMI is triggered. Furthermore, as the SMM

is initialized as part of the BIOS before the VMM, any protection the VMM may attempt to

leverage against the SMM could be potentially circumvented before it is applied.

5.4.3 Dual-monitor mode SMM

The Intel manual also describes an additional CPU mode referred to as dual-monitor

mode SMM (DMM)). DMM was created to prevent or limit the damage from the exploita-

tion of vulnerabilities in SMI handlers to gain control of SMM. An example of such an

attack can be found in [129]. While the original idea behind this implementation was to

compartmentalize the SMI handlers into less privileged SMM VMs [80], the capabilities

of the hypervisor running in SMM, the SMM Transfer Monitor (STM), in our opinion far

exceed what would be warranted.

The primary difference between the two SMM modes is that in dual-monitor mode the

SMM enters VMX root mode itself. In this mode, the STM is allowed to create virtual

machines within the SMM to run the SMI handlers. In comparison, AMD and ARM simply

enabled the regular hypervisor mode to trap SMIs, thus being able to compartmentalize

115

SMI handlers into regular VMs [2,3].

With the introduction of this new mode, the behavior of the VMCALL instruction has

also been extended. On CPUs without DMM support, the VMCALL instruction is only valid

if executed in VMX non-root - that is, in a virtual machine. On CPUs with dual-monitor

mode, the VMCALL instruction is valid even in VMX root and triggers an unconditional

transfer into the SMM.

This behavior has particular importance when we consider how a VMM would attempt

to starve the SMM, as we discussed for normal-mode SMM. To recall, in normal mode

the APIC could be configured by the VMM to starve the SMM. Now with a dedicated

instruction it is no longer possible, as the instruction unconditionally triggers the switch

without relying on the APIC to trigger the required interrupt.

As this instruction is no longer pre-emptible from the VMM, it can also be utilized by the

STM to position itself inline into the execution of the rest of the system. The STM could

inject this instruction as a trap to trigger the transfer of control when code-paths of interest

are executed within the VMM. While the presence of these hooks may be detectable if

the VMM performs code-integrity checks on itself, the SMM could disable such integrity

checks. While this instruction cannot be used to instrument virtual machines - as it would

trap into the VMM - it can be used to hook the VMM’s trap handlers. Afterwards, the

STM can use any of the regular instrumentation methods the VMM has over VMs, thus

attaining total control over the execution of the entire system.

Another particularly powerful addition in the dual-monitor mode is that the SMM can

jump into any of the other execution modes of the system. In a non-DMM configuration,

execution is returned to the same mode that was active before the SMI was triggered

whereas in DMM, there are no such restrictions. For example, this mechanism allows

the SMM to schedule the execution of VMs that the VMM deliberately suspended. Inter-

estingly, the stm can also specify if further SMIs should be blocked for the duration of a

VMENTER: ”VM entries that return from SMM and that do not deactivate the dual-monitor

116

treatment may leave SMIs blocked. This feature exists to allow an SMM monitor to invoke

functionality outside of the SMM without unblocking SMIs” [56]. This design decision is

particularly interesting, as now even SMIs can be blocked.

5.5 Summary

In this chapter we have highlighted the inherent limitations of our execution monitoring

approach and revisited VMI subversion attacks proposed in prior research. By examining

modern open-source hypervisors that make use of current hardware virtualization exten-

sions, we have been able to determine their pertinence for current applications. We further

discussed inherent limitations in using hardware virtualization extensions for VMM-based

security monitoring and highlighted how these limitations can have unintended side ef-

fects when not taken into consideration. We further explored ARM’s TrustZone and Intel’s

system-management mode and discussed how it can be used to both implement and to

subvert VMI applications. As these system represent a more privileged mode of operation

as our VMM based systems, it is important to understand the implications these modes

represent when building security tools, as exposure of these modes could undermine all

other security systems on modern hardware.

117

6 Conclusions

6.1 Summary

As the threat of malicious software attacking and infiltrating our computers constantly in-

creases, in-depth understanding of these threats is of tremendous importance. A first

requirement to be able to better protect our assets is to gain a detailed under standing of

threat vectors by examining the malicious software’s effect on our systems. Honeypots

and dynamic malware analysis systems have been of great importance in this on-going

arms race and we have presented a comprehensive evaluation of hardware virtualization

as an underlying platform to significantly improve these types of systems. We started

by identifying the core requirements these systems require: scalability; stealth and un-

hindered, tamper-resistant view into the behavior of modern malware. We followed by

reviewing existing systems and prior research which attempted to address these require-

ments. We then introduced different software solutions to help evaluate the potential of

hardware virtualization for achieving all requirements simultaneously. The cornerstone

of our approach has been a VMI based observation platform that is capable to perform

state-reconstruction triggered by hardware events directly, without any identifiable soft-

ware being present in the sandbox environment. Further combined with state-of-the-art

hypervisor and virtualization technology, our prototypes have successfully demonstrated

that virtualization provides the unparalleled scalability, stealth and tamper-resistance. We

successfully evaluated our system using a variety of modern malware, both in the forms

of network-based attacks as well as in bulk-analysis of previously captured malware sam-

ples. Our final malware analysis prototype marks a major step toward leveraging virtuliza-

tion technologies to create powerful security solutions.

118

6.2 Contributions

The first contribution of our work has been a comprehensive implementation of the re-

quired VMI software systems that enable out-of-band state reconstruction. We developed

various routines to allow in-depth examination of the Windows kernel from an external

perspective, and have worked with the open-source community to make our contributions

available to the defensive research community at large. All the requirements for our pro-

totypes have been successfully contributed back into projects such as the LibVMI library

and the Xen Project Hypervisor, making it possible for other researchers to easily deploy

and repeat our experiments.

The second contribution of our work has been identifying and evaluating the major

requirements facing malware collection and malware analysis tools. We have identified

several misconceptions in prior research regarding what metrics to use in the attempt to

show viability of proposed systems. In our work we have focused our attention on metrics

that are of immediate importance, some of which have thus far been overseen by other

proposed solutions.

Our third contribution is to have deployed and tested our systems on a large scale,

including live malware as well as bulk processing of large malware sets. Thanks to the

scalability of our systems, we have been able to effectively analyze tens of thousands of

malware samples on commodity hardware. Our tests have further provided an in-depth

insight into the behavior of modern malware.

Our fourth contribution is to have identified hardware and software limitations inherent

in the use of out-of-band VMI tools. We have shown several limitations in the hardware,

both in Intel and ARM, that could adversely affect the reliability of security systems based

on this technology, and have provided recommendations in avoiding encountering such

problems in the future.

119

6.3 Future directions

6.3.1 Intel Virtualization Exceptions

As virtualization extensions continue to evolve, alternative security models become more

viable for defense security research that were previously unable to guarantee secure

isolation. In recent years Intel has introduced a new extension, dubbed #VE (short for

Virtualization Exceptions). This has been in direct response to the defensive research

community’s finding that EPT based tracing present significant overhead that can prove

prohibitive for certain applications. The first - and thus far only - feature known that will use

the #VE mechanisms is the newly introduced VMFUNC instruction’s EPTP switching op-

tion.

The EPT extension on Intel has been from the beginning capable of maintaining up

to 512 distinct EPTs in the VMCS for each vCPU. Nevertheless, all modern open-source

hypervisor currently use only one EPT shared across all VMCS of the VM. However, in

case the hypervisor used more pages, it would be possible to maintain one restrictive

table used for trapping and one table for allowing the execution to flow normally. The

VMFUNC instruction is designed to allow switching between such ”views” from within the

guest. Further allowing EPT violations to be selectively delivered to the guest in the form

of interrupts without performing a VMEXIT, the performance overhead of the EPT based

tracing can be significantly reduced.

As the hypervisor can still selectively configured which EPT Page Table Entry (PTE)s

are injected via #VE into the guest and which ones are still trapped to the hypervisor,

the hybrid model of using both in-band and out-of-band delivery model first proposed by

Payne et al. [87] is becoming a lot more viable in the near future.

The first open-source implementation by Intel for the upcoming #VE extension has

already appeared in the Xen Project Hypervisor 4.6 release, and has been dubbed the

altp2m subsystem. In a joint effort, we have worked with Intel to enable this feature to be

120

used in a purely out-of-band monitoring scenario as well. The core feature added to Xen

that has immediate use-case for out-of-band scenarios is the support added for multiple

second-stage pagetables. In Section 5 we have identified the shared EPT as a core

limitations facing multi-vCPU guests. With the possibility of maintaining multiple sets of

tables, it is now possible to selective switch the view only on the violation-causing vCPU.

While this method still doesn’t obtain the performance benefits of the hybrid in-band/out-

of-band model, it will enable our prototypes to perform analysis on multi-vCPU guests as

well.

6.3.2 Mobile malware

With the rapid growth of the use of smart-phone devices there has already been a rapid

expansion of malware targeting this new platform [69], thus malware analysis has to be

able to also observe these types of malware. In our evaluation we have performed an

initial exploration of the ARM CPU’s virtualization extensions to support the type of mal-

ware analysis discussed in this thesis. As part of this effort, we have implemented an

initial set of tracing features based on the ARM two-stage paging mechanisms that will be

available as part of the Xen Project Hypervisor 4.6 release. As discussed in Section 5,

execution monitoring cannot be considered to reliable at this stage and alternative mech-

anisms need to be implemented. The SMC instruction has already been proposed as a

viable method to achieve execution monitoring [5, 44], but there is no hypervisor support

present for it at this time. Furthermore, at this time there is no singlestepping support

available for ARM platform which forms another obstacle to porting our prototypes to the

ARM platform. As such, further research is required to properly identify all the capabilities

of the ARM platform.

121

6.3.3 Data-only malware

As new and thus far unknown forms of malware appear, malware analysis systems will

also need to adapt. In recent research Vogl et al. [118] demonstrated the feasibility of

persistent data-only malware, capable of performing arbitrary computations without in-

serting any new code into the system. The detection and analysis of such malware will

pose a particular challenge in the future, albeit some proposals have already been made

to potentially detect such malware using performance monitoring counters [135]. These

counters have been shown in prior research to be trappable to the hypervisor [116], thus

malware analysis systems will need to adopt its monitoring strategy accordingly.

6.4 Concluding thoughts

Malware is a problem we are likely to be dealing with for the foreseeable future. The effec-

tive countering of this phenomenon will not be possible without the appropriate tools and

without the appropriate training of security personnel. As the complexity of our systems

continue to increase, it will be increasingly difficult for people to grasp and identify the in-

herent security risks present in our systems. There are no easy solutions to this problem,

as our systems have not been designed with security in mind and are becoming more

complex to secure. As Brendan Dolan-Gavitt has very eloquently put it, we ”require deep

changes to the way we construct systems, as we would need a way to tie its low-level

implementation to a high-level semantic description of its runtime behavior in a way that

is verifiable [...] by asking whether we can ensure that a program 1) says what it does; 2)

does what it says; and 3) can prove it” [28].

Whether it is possible to construct such systems with today’s technology remains to

be seen. In many respect, the fundamental reason why we are dealing with security

problems is because of our use of general purpose computers. By design, these systems

can perform arbitrary computations, which is the reason why it has been so economically

122

feasible to manufacture them on large-scale. On the flip side, this makes it difficult to

differentiate between malicious and non-malicious computations.

Today arguably the most effective solution has been employing software white-listing to

battle malware. By preventing software with an unknown hash to even start on the system,

malware would arguably have a hard time getting started. The price of this security model

however is to give up our ability to run arbitrary software without prior approval of the

maintainer of the whitelist - be that the operating system vendor, the hardware vendor, or

some other third party. Furthermore, the security provided by current implementations is

limited as the underlying hardware can still execute any code; thus, all an attacker needs

to find is a vulnerability in an already running software to obtain a foothold.

An alternative white-listing approach may be to build purpose-made chips designed to

execute specific functions only, effectively moving away from general purpose computers.

It is not hard to imagine, considering the popularity of the 3D printer movement today, that

in the future we may be able to print our own chips and do so in a reasonably economical

manner. If we succeed in that endeavor, attackers would be restricted to find ways to

induce glitches in the hardware to subvert the computation flow (such attacks have already

appeared against commodity hardwares today). Nevertheless, provided that the purpose-

made chips would be more varied, targeted attacks would become increasingly more

difficult.

In the interim, what we can do is to refine our existing layered, defense-in-depth secu-

rity model and continue increasing the cost of breaking through all layers. Today deploy-

ing hypervisors for security purposes have already been effectively employed, as we have

shown in this dissertation as well. On today’s hardware a number of extra layers are also

present that could be further used for this purpose. What must be realized however is

that an extra layer only provides extra protection if it is implemented such that each layer

has viewer and viewer attack vectors. Great care must be taken to restrict layers to only

interact with code and data from layers immediately next to them, or we open a path for

123

malware to by-pass all other layers. Unfortunately, with the mixed definition of what we

are trying to protect and against who, it is the tendency to move DRM software into the

most privileged sections of our system to protect against the actual owner of the system.

Such design decisions effectively undermine the defense-in-depth model of having layers

to begin with, exposing the owner of the system to greater risks then would be warranted.

Without the ability of the owner to opt-out from having such software pre-installed or dis-

abling these systems, the risk of exposing the most privileged components of our system

to malware will continue to be present, regardless how many layers we use.

124

Acronyms

ABI Application Binary Interface. 16

APC Asynchronous Procedure Call. 67, 68

API Application Program Interface. 24

APIC Advanced Programmable Interrupt Controller. 113

AV anti-virus. 83

CoW Copy-on-Write. iii, 13, 50, 71, 80, 82, 98

DKOM Direct Kernel Object Manipulation. ii, 19, 20, 24, 25, 73, 107, 108

DKSM Direct Kernel Structure Manipulation. 20

DMA Direct Memory Access. 110

EAT Export Address table. 24

EPT Extended Page Table. iii, 25, 61, 65, 82, 107–111, 119, 120

FMA forensic memory analysis. 107

GPA Guest Physical Address. 61, 104

GVA Guest Virtual Address. 61, 104

HIH High-Interaction Honeypot. iii, 11, 12, 30–33, 35–38, 40, 41, 44, 46, 48, 50

IAT Import Address table. 24

IDT Interrupt Descriptor Table. 60

125

LIH Low-Interaction Honeypot. 11, 12, 44

NAT Network Address Translation. 41

NX eXecute-Never. 61

OS Operating System. 57, 67, 107

PE Portable Executable. 68

PEB Process Environment Block. 68

PGE Page Global Enabled. 103

PTE Page Table Entry. 119

RVA relative virtual address. 73

SMC Secure Monitor Call. 111, 112, 120

SMI System Management Interrupt. 113–115

SMM System Management Mode. 15, 111, 113, 114

SMRAM System-Management RAM. 113, 114

SSDT System Service Dispatch Table. 77

STM SMM Transfer Monitor. 114, 115

TCB Trusted Computing Base. 110

TLB Translation Lookaside Buffer. 102, 103, 105, 106

TSC Time-stamp counter. 96

V2P virtual-to-physical. 60, 102

126

VM Virtual Machine. 12, 14, 16, 18, 19, 21, 22, 24, 25, 41, 51, 58, 59, 61, 66, 78, 83,

107, 110–112, 114, 115, 119

VMCS Virtual Machine Control Segment. 58–61, 106–108

VMI Virtual Machine Introspection. 16, 20–22, 59, 105, 107, 110–112, 117, 118

VMM virtual machine monitor aka. hypervisor. 14, 16, 22, 24, 57–59, 62, 106, 107,

111–113, 115

VPID Virtual Processor Identification. 105–107

VT VirusTotal. 78

127

Appendix A

Notes

1md5sum 13ce4cd747e450a129d900e842315328

2TDL4 md5sum a1b3e59ae17ba6f940afaf86485e5907

3TDL4 cryptbase.dll md5sum d39d6893117cf1a80c77de1f7ff3d944

4TDL4 syssetup.dll md5sum 9b6e5b9c0deb825d5aed343beb090853

5SpyEye2 md5sum 8e7c7dde842223bfa7d09680f9b74f5c

6Zeus md5sum ea039a854d20d7734c5add48f1a51c34

7Zeus msimg32.dll md5sum e051308c2f0c1b280514c99aabd36e34

8CryptoLocker md5sum 0246bb54723bd4a49444aa4ca254845a

9CryptoLocker carved from memory md5sum 67b2d99f5be8c76259159aab6b20d470

10CryptoLocker unpacked md5sum 0246bb54723bd4a49444aa4ca254845a

11Zusy md5sum bca0660d52f01c7e99b8a6378f436cb8

12Zusy dropped executable md5sum 0468b7bce4741d965c9ede5d5367993f

13MultiPlug md5sum 000472488152b778726c110e83239f9a

14Zusy dropped executable md5sum 8b9d09589579a5e61325a33ccecb5b72

15Zusy dropped 64-bit DLL md5sum 286b89c2f7ef8f21ea59ec803b634f21

16Zusy dropped 32-bit DLL md5sum e5af4aae60e3e80554bbc23dae088d84

17Sisbot.A md5sum 0108aa26cdce45318214278e3eaf730c

18Sisbot.A unpacked md5sum ac8bb161c73a1c37018cfbc49d02d3b2

19md5sum fe85ff523902c8ed4a328d7aa66b180a

128

Listing 1: POOL HEADER definition on Windows 7

1 typedef struct _POOL_HEADER {

2 union {

3 struct {

4 ULONG32 PreviousSize : 8;

5 ULONG32 PoolIndex : 8;

6 ULONG32 BlockSize : 8;

7 ULONG32 PoolType : 8;

8 };

9 ULONG32 Ulong1;

10 };

11

12 // This tag is used for scanning and fingerprinting

13 ULONG32 PoolTag;

14

15 union {

16 struct _EPROCESS* ProcessBilled;

17 struct {

18 UINT16 AllocatorBackTraceIndex;

19 UINT16 PoolTagHash;

20 UINT8 _PADDING0_[0x4];

21 };

22 };

23 } POOL_HEADER, *PPOOL_HEADER;

Listing 2: Basic process creation on Windows using the CreateProcessA function

1 #include <windows.h>

2 void main(void)

3 {

4 STARTUPINFOA si = {0};

129

5 PROCESS_INFORMATION pi = {0};

6 char *cmdline = "calc.exe";

7 CreateProcessA(NULL, // No module name (use command line)

8 cmdline, // Command line

9 NULL, // Process handle not inheritable

10 NULL, // Thread handle not inheritable

11 FALSE, // Set handle inheritance to FALSE

12 0, // No creation flags

13 NULL, // Use parent’s environment block

14 NULL, // Use parent’s starting directory

15 &si, // Pointer to STARTUPINFO structure

16 &pi); // Pointer to PROCESS_INFORMATION structure

17 }

Listing 3: IDA Pro x86 disassembly of the basic process creation binary compiled with

Visual Studio Community 2013

1 push ebp

2 mov ebp, esp

3 sub esp, 98h

4 push ebx

5 push esi

6 push edi

7 mov dword ptr [ebp-44h], 0

8 push 40h ; Size

9 push 0 ; Val

10 lea eax, [ebp-40h]

11 push eax ; Dst

12 call j__memset

13 add esp, 0Ch

14 mov dword ptr [ebp-54h], 0

15 xor eax, eax

130

16 mov [ebp-50h], eax

17 mov [ebp-4Ch], eax

18 mov [ebp-48h], eax

19 mov [ebp+lpCommandLine], offset aCalc_exe ; "calc.exe"

20 lea eax, [ebp-54h]

21 push eax ; lpProcessInformation

22 lea ecx, [ebp-44h]

23 push ecx ; lpStartupInfo

24 push 0 ; lpCurrentDirectory

25 push 0 ; lpEnvironment

26 push 0 ; dwCreationFlags

27 push 0 ; bInheritHandles

28 push 0 ; lpThreadAttributes

29 push 0 ; lpProcessAttributes

30 mov edx, [ebp-58h]

31 push edx ; lpCommandLine

32 push 0 ; lpApplicationName

33 call ds:__imp__CreateProcessA@40 ; CreateProcessA(x,x,x,x,x,x,x,x,x,x)

34 xor eax, eax

35 pop edi

36 pop esi

37 pop ebx

38 mov esp, ebp

39 pop ebp

40 retn

Listing 4: IDA Pro x86-64 disassembly of the basic process creation binary compiled with

Visual Studio Community 2013

1 push rdi

2 sub rsp, 0E0h

3 mov dword ptr [rsp+70h], 0

131

4 lea rax, [rsp+78h]

5 mov rdi, rax

6 xor eax, eax

7 mov ecx, 60h

8 rep stosb

9 mov qword ptr [rsp+58h], 0

10 lea rax, [rsp+60h]

11 mov rdi, rax

12 xor eax, eax

13 mov ecx, 10h

14 rep stosb

15 lea rax, aCalc_exe ; "calc.exe"

16 mov [rsp+50h], rax

17 lea rax, [rsp+58h]

18 mov [rsp+48h], rax ; lpProcessInformation

19 lea rax, [rsp+70h]

20 mov [rsp+40h], rax ; lpStartupInfo

21 mov qword ptr [rsp+38h], 0 ; lpCurrentDirectory

22 mov qword ptr [rsp+30h], 0 ; lpEnvironment

23 mov dword ptr [rsp+28h], 0 ; dwCreationFlags

24 mov dword ptr [rsp+20h], 0 ; bInheritHandles

25 xor r9d, r9d ; lpThreadAttributes

26 xor r8d, r8d ; lpProcessAttributes

27 mov rdx, [rsp+50h] ; lpCommandLine

28 xor ecx, ecx ; lpApplicationName

29 call cs:__imp_CreateProcessA

30 xor eax, eax

31 add rsp, 0E0h

32 pop rdi

33 retn

132

Requests Domain Requests Domain
421 s3.amazonaws.com 26 api.shuame.com
391 majuwe.com 25 n5.linkpc.net
206 api.mediaconfig.net 25 google.com
199 sendme9.ru 24 tracking.uniblue.com
172 softonic-analytics.net 23 www.secondofferdelivery.com
159 imp.myappz02.com 23 nowtake.me
123 stiekehelp.gameassists.co.uk 22 secure.pn-installer7.com
78 4threquest.me 21 service.downloadadmin.com
72 srv.desk-top-app.info 21 sendme8.ru
70 pastebin.com 21 secure.5-pn-installer.com
62 rghost.net 20 cdn.backupgrid.net
58 imp.myappz01.com 19 secure.pn-installer28.com
56 www.google.com 19 ilo.brenz.pl
51 data.dmccint.com 17 easysetupinstall.com
49 cms.dmccint.com 17 api.couponcute.com
48 install.oinstaller9.com 16 secure.oinstaller7.com
44 www.4threquest.me 15 www.djapp.info
44 stat.miniload.org 15 rp.baixakialtcdn2.com
42 url.hongdafood.cn 15 info.baixakialtcdn2.com
40 secure.oinstaller6.com 15 imp.myappz11.com
40 errors.crossrider.com 14 dl4.getz.tv
39 imp.softwareinstaller.org 13 youssef20.ddns.net
36 config.softwareinstaller.org 13 api.e54h3p0o.com
30 dl.iwin.com 12 saila2014.no-ip.biz
26 syscos18.ru 12 downloads.updatersoft.com

Table 10: Top 50 DNS requests

133

References

[1] AlienVault. Virtual machine detection tricks. https://github.com/jaimeblasco/

AlienvaultLabs/blob/master/malware_rulesets/yara/vmdetect.yar, February 4

2014.

[2] AMD. AMD64 Architecture Programmer’s Manual Volume 2: System Programming, October 2012.

[3] ARM. ARM Architecture Reference Manual, July 2012.

[4] Kurniadi Asrigo, Lionel Litty, and David Lie. Using vmm-based sensors to monitor honeypots. In

Proceedings of the 2nd international conference on Virtual execution environments, pages 13–23.

ACM, 2006.

[5] Ahmed M Azab, Peng Ning, Jitesh Shah, Quan Chen, Rohan Bhutkar, Guruprasad Ganesh, Jia Ma,

and Wenbo Shen. Hypervision across worlds: real-time kernel protection from the arm trustzone se-

cure world. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security, pages 90–102. ACM, 2014.

[6] Sina Bahram, Xuxian Jiang, Zhi Wang, Mike Grace, Jinku Li, Deepa Srinivasan, Junghwan Rhee,

and Dongyan Xu. Dksm: Subverting virtual machine introspection for fun and profit. In Reliable

Distributed Systems, 2010 29th IEEE Symposium on, pages 82–91. IEEE, 2010.

[7] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher Kruegel, and Giovanni

Vigna. Efficient detection of split personalities in malware. In NDSS, 2010.

[8] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and Christopher Kruegel. A view on cur-

rent malware behaviors. In USENIX workshop on large-scale exploits and emergent threats (LEET),

2009.

[9] Michael Beham, Marius Vlad, and Hans P Reiser. Intrusion detection and honeypots in nested virtu-

alization environments. In Dependable Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP

International Conference on, pages 1–6. IEEE, 2013.

[10] Boldizsár Bencsáth, Gábor Pék, Levente Buttyán, and Márk Félegyházi. Duqu: Analysis, detection,

and lessons learned. In ACM European Workshop on System Security (EuroSec), volume 2012,

2012.

[11] Robin G Berthier. Advanced honeypot architecture for network threats quantification. ProQuest,

2009.

134

https://github.com/jaimeblasco/AlienvaultLabs/blob/master/malware_rulesets/yara/vmdetect.yar
https://github.com/jaimeblasco/AlienvaultLabs/blob/master/malware_rulesets/yara/vmdetect.yar

[12] Bill Blunden. Rootkit Arsenal: Escape and Evasion in the Dark Corners of the System. Jones &

Bartlett Publishers, 2012.

[13] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto. Scientific but not aca-

demical overview of malware anti-debugging, anti-disassembly and anti-vm technologies, 2012.

[14] Jurriaan Bremer. Blackhat 2013 workshop: Cuckoo sandbox - open source automated malware anal-

ysis. http://cuckoosandbox.org/2013-07-27-blackhat-las-vegas-2013.html, 2013.

[15] Denis Bueno, Kevin J Compton, Karem A Sakallah, and Michael Bailey. Detecting traditional packers,

decisively. In Research in Attacks, Intrusions, and Defenses, pages 184–203. Springer, 2013.

[16] bugcheck. Grepexec: Grepping executive objects from pool memory. Uninformed, 2006.

[17] Jamie Butler. Dkom (direct kernel object manipulation). Black Hat Windows Security, 2004.

[18] Jamie Butler and Peter Silberman. Raide: Rootkit analysis identification elimination. Black Hat USA,

47, 2006.

[19] Martim Carbone, Matthew Conover, Bruce Montague, and Wenke Lee. Secure and robust moni-

toring of virtual machines through guest-assisted introspection. In Research in Attacks, Intrusions,

and Defenses, volume 7462 of Lecture Notes in Computer Science, pages 22–41. Springer Berlin

Heidelberg, 2012.

[20] Peter M Chen and Brian D Noble. When virtual is better than real [operating system relocation to

virtual machines]. In Hot Topics in Operating Systems, 2001. Proceedings of the Eighth Workshop

on, pages 133–138. IEEE, 2001.

[21] George Coker. Xen security modules (xsm). Xen Summit, pages 1–33, 2006.

[22] Robert R. Collins. The caveats of system management mode. http://www.rcollins.org/ddj/

May97/May97.html, October 29 2014.

[23] Zhui Deng, Xiangyu Zhang, and Dongyan Xu. Spider: Stealthy binary program instrumentation

and debugging via hardware virtualization. In Proceedings of the 29th Annual Computer Security

Applications Conference, ACSAC ’13, pages 289–298, New York, NY, USA, 2013. ACM.

[24] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware analysis via hardware

virtualization extensions. In Proceedings of the 15th ACM conference on Computer and communica-

tions security, pages 51–62. ACM, 2008.

[25] Dionaea. catches bugs. http://dionaea.carnivore.it, November 20 2014.

135

http://cuckoosandbox.org/2013-07-27-blackhat-las-vegas-2013.html
http://www.rcollins.org/ddj/May97/May97.html
http://www.rcollins.org/ddj/May97/May97.html
http://dionaea.carnivore.it

[26] DNSchef. http://thesprawl.org/projects/dnschef, March 16 2012.

[27] B. Dolan-Gavitt, B.D. Payne, and W. Lee. Leveraging forensic tools for virtual machine introspection.

Gt-cs-11-05, Georgia Institute of Technology, 2011.

[28] Brendan Dolan-Gavitt. http://www.cc.gatech.edu/˜brendan/research.pdf, July 14 2015.

[29] Brendan Dolan-Gavitt. Graphical malware actuation with panda and volatility. http://laredo-13.

mit.edu/˜brendan/BSIDES_NOLA_2015.pdf, July 5 2015.

[30] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee. Virtuoso: Nar-

rowing the semantic gap in virtual machine introspection. In Security and Privacy (SP), 2011 IEEE

Symposium on, pages 297–312. IEEE, 2011.

[31] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Giffin. Robust signatures

for kernel data structures. In Proceedings of the 16th ACM conference on Computer and communi-

cations security, pages 566–577. ACM, 2009.

[32] Brendan Dolan-Gavitt and Patrick Traynor. Using kernel type graphs to detect dummy structures.

Technical report, Georgia Tech, 2008.

[33] Brendan F Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and Ryan Whelan. Repeatable

reverse engineering for the greater good with panda. Technical Reports, Department of Computer

Science, Columbia University, 2014.

[34] Maximillian Dornseif, Thorsten Holz, and Christian N Klein. Nosebreak-attacking honeynets. In

Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC, pages 123–

129. IEEE, 2004.

[35] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M Chen. Revirt:

Enabling intrusion analysis through virtual-machine logging and replay. ACM SIGOPS Operating

Systems Review, 36(SI):211–224, 2002.

[36] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on automated

dynamic malware-analysis techniques and tools. ACM Computing Surveys (CSUR), 44(2):6, 2012.

[37] Nelson Elhage. Virtunoid: Breaking out of kvm. Black Hat USA, 2011.

[38] ESET. Tdl4 rebooted. http://blog.eset.com/2011/10/18/tdl4-rebooted, June 9 2012.

[39] Elia Florio. When malware meets rootkits. Virus Bulletin, 2005.

136

http://thesprawl.org/projects/dnschef
http://www.cc.gatech.edu/~brendan/research.pdf
http://laredo-13.mit.edu/~brendan/BSIDES_NOLA_2015.pdf
http://laredo-13.mit.edu/~brendan/BSIDES_NOLA_2015.pdf
http://blog.eset.com/2011/10/18/tdl4-rebooted

[40] Fox-IT. Tilon/spyeye2 intelligence report. http://foxitsecurity.files.wordpress.com/

2014/02/spyeye2_tilon_20140225.pdf, 2014.

[41] Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin. Compatibility is not transparency:

Vmm detection myths and realities. In HotOS, 2007.

[42] Tal Garfinkel and Mendel Rosenblum. When virtual is harder than real: Security challenges in virtual

machine based computing environments. In HotOS, 2005.

[43] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based architecture for intru-

sion detection. In NDSS, 2003.

[44] Xinyang Ge, Hayawardh Vijayakumar, and Trent Jaeger. Sprobes: Enforcing kernel code integrity on

the trustzone architecture. arXiv preprint arXiv:1410.7747, 2014.

[45] Jason Gionta, Ahmed Azab, William Enck, Peng Ning, and Xiaolan Zhang. Seer: practical memory

virus scanning as a service. In Proceedings of the 30th Annual Computer Security Applications

Conference, pages 186–195. ACM, 2014.

[46] GRSecurity. Pageexec. https://pax.grsecurity.net/docs/pageexec.txt, December 30

2006.

[47] Zhongshu Gu, Zhui Deng, Dongyan Xu, and Xuxian Jiang. Process implanting: A new active in-

trospection framework for virtualization. In Reliable Distributed Systems (SRDS), 2011 30th IEEE

Symposium on, pages 147–156. IEEE, 2011.

[48] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A study of the packer problem and its solutions. In

Recent Advances in Intrusion Detection, pages 98–115. Springer, 2008.

[49] David Harley. http://www.welivesecurity.com/2012/02/02/

tdl4-reloaded-purple-haze-all-in-my-brain/, February 3 2014.

[50] Takahiro Haruyama and Hiroshi Suzuki. One-byte modifications for breaking memory forensic anal-

ysis. Black Hat Europe, 2012.

[51] S. A. Hofmeyr, A. Somayaji, and S. Forrest. Intrusion detection using sequences of system calls.

Journal of Computer Security, 6:151–180, 1998.

[52] Greg Hoglund and James Butler. Rootkits: subverting the Windows kernel. Addison-Wesley Profes-

sional, 2006.

[53] Honeynet. The qebek project. https://projects.honeynet.org/sebek/wiki/Qebek,

November 20 2014.

137

http://foxitsecurity.files.wordpress.com/2014/02/spyeye2_tilon_20140225.pdf
http://foxitsecurity.files.wordpress.com/2014/02/spyeye2_tilon_20140225.pdf
https://pax.grsecurity.net/docs/pageexec.txt
http://www.welivesecurity.com/2012/02/02/tdl4-reloaded-purple-haze-all-in-my-brain/
http://www.welivesecurity.com/2012/02/02/tdl4-reloaded-purple-haze-all-in-my-brain/
https://projects.honeynet.org/sebek/wiki/Qebek

[54] Honeynet. The sebek project. https://projects.honeynet.org/sebek, November 20 2014.

[55] Xen Project Hypervisor. http://www.xenproject.org, July 14 2015.

[56] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3C: System Program-

ming Guide, Part 3, June 2013.

[57] Bhushan Jain, Mirza Basim Baig, Dongli Zhang, Donald E. Porter, and Radu Sion. Sok: Introspec-

tions on trust and the semantic gap. In Proceedings of the 2014 IEEE Symposium on Security and

Privacy, SP ’14, pages 605–620, Washington, DC, USA, 2014. IEEE Computer Society.

[58] Xuxian Jiang and Xinyuan Wang. out-of-the-box monitoring of vm-based high-interaction honeypots.

In Recent Advances in Intrusion Detection, pages 198–218. Springer, 2007.

[59] Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection through vmm-based out-

of-the-box semantic view reconstruction. In Proceedings of the 14th ACM conference on Computer

and communications security, pages 128–138. ACM, 2007.

[60] Stephen T Jones, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. Antfarm: Tracking

processes in a virtual machine environment. In USENIX Annual Technical Conference, General

Track, pages 1–14, 2006.

[61] Mikael Keri. Detecting dionaea honeypot using nmap. http://blog.prowling.nu/2012/04/

detecting-dionaea-honeypot-using-nmap.html, April 3 2012.

[62] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: bare-metal analysis-based eva-

sive malware detection. In Proceedings of the 23rd USENIX conference on Security Symposium,

pages 287–301. USENIX Association, 2014.

[63] Peter Kleissner. The art of bootkit development. http://www.stoned-vienna.com/pdf/

The-Art-of-Bootkit-Development.pdf, June 26 2015.

[64] Peter Friedrich Klemperer. Efficient Hypervisor Based Malware Detection. PhD thesis, Carnegie

Mellon University, 2014.

[65] Clemens Kolbitsch, Engin Kirda, and Christopher Kruegel. The power of procrastination: detection

and mitigation of execution-stalling malicious code. In Proceedings of the 18th ACM conference on

Computer and communications security, pages 285–296. ACM, 2011.

[66] Christian Kreibich, Nicholas Weaver, Chris Kanich, Weidong Cui, and Vern Paxson. Gq: Practical

containment for measuring modern malware systems. In Proceedings of the 2011 ACM SIGCOMM

conference on Internet measurement conference, pages 397–412. ACM, 2011.

138

https://projects.honeynet.org/sebek
http://www.xenproject.org
http://blog.prowling.nu/2012/04/detecting-dionaea-honeypot-using-nmap.html
http://blog.prowling.nu/2012/04/detecting-dionaea-honeypot-using-nmap.html
http://www.stoned-vienna.com/pdf/The-Art-of-Bootkit-Development.pdf
http://www.stoned-vienna.com/pdf/The-Art-of-Bootkit-Development.pdf

[67] Peter Kruse, Feike Hacquebord, and Robert McArdle. Threat report: W32.tinba (tiny-

banker) the turkish incident. http://www.trendmicro.com/cloud-content/us/pdfs/

security-intelligence/white-papers/wp_w32-tinba-tinybanker.pdf, 2012.

[68] KVM. Kernel based virtual machine. http://www.linux-kvm.org, November 4 2013.

[69] Motive Security Labs. Motive security labs malware report h2 2014. Technical report, Alcatel-Lucent,

2014.

[70] Andrés Lagar-Cavilla and Andrew Cooper. Xen-devel: Handle resumed instruction based on pre-

vious mem event reply. http://www.gossamer-threads.com/lists/xen/devel/347492#

347492, September 11 2014.

[71] Horacio Andrés Lagar-Cavilla, Joseph Andrew Whitney, Adin Matthew Scannell, Philip Patchin,

Stephen M Rumble, Eyal De Lara, Michael Brudno, and Mahadev Satyanarayanan. Snowflock: rapid

virtual machine cloning for cloud computing. In Proceedings of the 4th ACM European conference

on Computer systems, pages 1–12. ACM, 2009.

[72] John Leitch. Process hollowing. http://www.autosectools.com/process-hollowing.pdf,

November 4 2013.

[73] Bin Liang, Wei You, Wenchang Shi, and Zhaohui Liang. Detecting stealthy malware with inter-

structure and imported signatures. In Proceedings of the 6th ACM Symposium on Information, Com-

puter and Communications Security, pages 217–227. ACM, 2011.

[74] libguestfs. Library for accessing and modifying vm disk images. http://libguestfs.org, April

10 2012.

[75] libvirt. The virtualization api. http://libvirt.org, April 10 2012.

[76] LibVMI. http://libvmi.com, April 4 2015.

[77] Michael Ligh. Torpig vmm/idt signatures. http://www.mnin.org/write/2006_torpigsigs.

pdf, 2006.

[78] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. Detecting environment-sensitive

malware. In Recent Advances in Intrusion Detection, pages 338–357. Springer, 2011.

[79] malwr.com. Analysis results. https://malwr.com/analysis/

MzhlZWI5ZjM2NWUwNDAzYjgxNDJmMjIwNzBlMGE2YjE/, July 13 2015.

[80] Pete Markowsky. Ring -1 vs. ring -2: Containerizing malicious smm interrupt handlers on amd-v.

ShmooCon, 2010.

139

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_w32-tinba-tinybanker.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp_w32-tinba-tinybanker.pdf
http://www.linux-kvm.org
http://www.gossamer-threads.com/lists/xen/devel/347492#347492
http://www.gossamer-threads.com/lists/xen/devel/347492#347492
http://www.autosectools.com/process-hollowing.pdf
http://libguestfs.org
http://libvirt.org
http://libvmi.com
http://www.mnin.org/write/2006_torpigsigs.pdf
http://www.mnin.org/write/2006_torpigsigs.pdf
https://malwr.com/analysis/MzhlZWI5ZjM2NWUwNDAzYjgxNDJmMjIwNzBlMGE2YjE/
https://malwr.com/analysis/MzhlZWI5ZjM2NWUwNDAzYjgxNDJmMjIwNzBlMGE2YjE/

[81] McAfee. http://blogs.mcafee.com/mcafee-labs/conficker-worm-using-metasploit-payload-to-spread,

June 9 2012.

[82] Microsoft MSDN. Createprocess function. https://msdn.microsoft.com/en-us/library/

windows/desktop/ms682425(v=vs.85).aspx, May 11 2015.

[83] Jose Nazario. Phoneyc: a virtual client honeypot. In Proceedings of the 2nd USENIX conference on

Large-scale exploits and emergent threats: botnets, spyware, worms, and more, pages 6–6. USENIX

Association, 2009.

[84] Novetta. Operation smn - axiom threat actor group report. http://www.novetta.com/

wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf, November 2014.

[85] James S Okolica and Gilbert L Peterson. Extracting forensic artifacts from windows o/s memory.

Technical report, DTIC Document, 2011.

[86] Mila Parkour. Contagio dump. http://contagiodump.blogspot.com, February 4 2014.

[87] Bryan D Payne, Martim Carbone, Monirul Sharif, and Wenke Lee. Lares: An architecture for secure

active monitoring using virtualization. In Security and Privacy, 2008. SP 2008. IEEE Symposium on,

pages 233–247. IEEE, 2008.

[88] Bryan D Payne, MDP de Carbone, and Wenke Lee. Secure and flexible monitoring of virtual ma-

chines. In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual,

pages 385–397. IEEE, 2007.

[89] Gábor Pék, Boldizsár Bencsáth, and Levente Buttyán. nether: In-guest detection of out-of-the-guest

malware analyzers. In Proceedings of the Fourth European Workshop on System Security, page 3.

ACM, 2011.

[90] Roberto Perdisci, Wenke Lee, and Nick Feamster. Behavioral clustering of http-based malware and

signature generation using malicious network traces. In NSDI, pages 391–404, 2010.

[91] Jonas Pfoh, Christian Schneider, and Claudia Eckert. Nitro: Hardware-based system call tracing for

virtual machines. In Advances in Information and Computer Security, pages 96–112. Springer, 2011.

[92] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable third generation archi-

tectures. Communications of the ACM, 17(7):412–421, 1974.

[93] Rapid7. Metasploit penetration testing software. http://www.metasploit.com, April 12 2012.

[94] Rekall. Memory forensics analysis framework. https://code.google.com/p/rekall, May 12

2014.

140

http://blogs.mcafee.com/mcafee-labs/conficker-worm-using-metasploit-payload-to-spread
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
http://www.novetta.com/wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf
http://www.novetta.com/wp-content/uploads/2014/11/Executive_Summary-Final_1.pdf
http://contagiodump.blogspot.com
http://www.metasploit.com
https://code.google.com/p/rekall

[95] Junghwan Rhee, Ryan Riley, Dongyan Xu, and Xuxian Jiang. Kernel malware analysis with un-

tampered and temporal views of dynamic kernel memory. In Recent Advances in Intrusion Detection.

Springer, 2010.

[96] Ryan Riley, Xuxian Jiang, and Dongyan Xu. An architectural approach to preventing code injection

attacks. Dependable and Secure Computing, IEEE Transactions on, 7(4):351–365, 2010.

[97] Anthony Roberts, Richard McClatchey, Saad Liaquat, Nigel Edwards, and Mike Wray. Introducing

pathogen: A real-time virtual machine introspection framework. Technical report, HP, 2013.

[98] T. Roy. x64 deep dive. http://www.codemachine.com/article_x64deepdive.html, June

26 2015.

[99] Paul Royal. Entrapment: Tricking malware with transparent, scalable malware analysis. Blackhat EU,

2012.

[100] Paul Royal, Mitch Halpin, David Dagon, Robert Edmonds, and Wenke Lee. Polyunpack: Automating

the hidden-code extraction of unpack-executing malware. In Computer Security Applications Confer-

ence, 2006. ACSAC’06. 22nd Annual, pages 289–300. IEEE, 2006.

[101] Joanna Rutkowska and Rafal Wojtczuk. Preventing and detecting xen hypervisor subversions. Black-

hat Briefings USA, 2008.

[102] Andreas Schuster. Searching for processes and threads in microsoft windows memory dumps. digital

investigation, 3:10–16, 2006.

[103] ShadowServer. The shadowserver foundation. https://shadowserver.org, February 4 2014.

[104] Monirul I Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure in-vm monitoring using hard-

ware virtualization. In Proceedings of the 16th ACM conference on Computer and communications

security, pages 477–487. ACM, 2009.

[105] Asaf Shelly. Asynchronous procedure calls. https://msdn.microsoft.com/en-us/library/

windows/desktop/ms681951%28v=vs.85%29.aspx, May 11 2015.

[106] Sophos. Troj/msil-kw. http://www.sophos.com/en-us/threat-center/

threat-analyses/viruses-and-spyware/Troj˜MSIL-KW/detailed-analysis.aspx,

February 14 2014.

[107] Sherri Sparks and Jamie Butler. Shadow walker: Raising the bar for rootkit detection. Black Hat

Japan, pages 504–533, 2005.

141

http://www.codemachine.com/article_x64deepdive.html
https://shadowserver.org
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681951%28v=vs.85%29.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~MSIL-KW/detailed-analysis.aspx
http://www.sophos.com/en-us/threat-center/threat-analyses/viruses-and-spyware/Troj~MSIL-KW/detailed-analysis.aspx

[108] Sherri Sparks and Shawn Embleton. Smm rootkits: A new breed of os independent malware. Black

Hat USA, Las Vegas, NV, USA, 2008.

[109] Abhinav Srivastava and Jonathon Giffin. Tamper-resistant, application-aware blocking of malicious

network connections. In Recent Advances in Intrusion Detection, pages 39–58. Springer, 2008.

[110] Sahil Suneja, Canturk Isci, Eyal de Lara, and Vasanth Bala. Exploring vm introspection: Techniques

and trade-offs. In Proceedings of the 11th ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments, pages 133–146. ACM, 2015.

[111] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. Heisenbyte: Thwarting memory disclo-

sure attacks using destructive code reads. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 256–267. ACM, 2015.

[112] Jacob Torrey. More: measurement of running executables. In Proceedings of the 9th Annual Cyber

and Information Security Research Conference, pages 117–120. ACM, 2014.

[113] Jacob Torrey. More shadow walker: Tlb-splitting on modern x86. BlackHat, 2014.

[114] K.L. Tseng, B. Liu, R. Sood, M.R. Castelino, and M. Tallam. Determining policy actions for the

handling of data read/write extended page table violations, June 27 2013. WO Patent App. PC-

T/US2011/067,038.

[115] VirusTotal. Free online virus, malware and url scanner. http://virustotal.com, February 4

2014.

[116] Sebastian Vogl and Claudia Eckert. Using hardware performance events for instruction-level moni-

toring on the x86 architecture. In Proceedings of EuroSec’12, 5th European Workshop on System

Security. ACM Press, April 2012.

[117] Sebastian Vogl, Fatih Kilic, Christian Schneider, and Claudia Eckert. X-tier: Kernel module injection.

In Network and System Security, pages 192–205. Springer, 2013.

[118] Sebastian Vogl, Jonas Pfoh, Thomas Kittel, and Claudia Eckert. Persistent data-only malware: Func-

tion hooks without code. In Symposium on Network and Distributed System Security (NDSS), 2014.

[119] Volatility. The volatility framework: Volatile memory artifact extraction utility framework. https:

//www.volatilesystems.com/default/volatility, January 15 2014.

[120] Michael Vrable, Justin Ma, Jay Chen, David Moore, Erik Vandekieft, Alex C Snoeren, Geoffrey M

Voelker, and Stefan Savage. Scalability, fidelity, and containment in the potemkin virtual honeyfarm.

In ACM SIGOPS Operating Systems Review, volume 39, pages 148–162. ACM, 2005.

142

http://virustotal.com
https://www.volatilesystems.com/default/volatility
https://www.volatilesystems.com/default/volatility

[121] AAron Walters and Nick L Petroni. Volatools: Integrating volatile memory into the digital investigation

process. Black Hat DC 2007, pages 1–18, 2007.

[122] Jiang Wang, Angelos Stavrou, and Anup Ghosh. Hypercheck: A hardware-assisted integrity monitor.

In Recent Advances in Intrusion Detection, pages 158–177. Springer, 2010.

[123] Jiang Wang, Kun Sun, and Angelos Stavrou. An analysis of system management mode (smm)-based

integrity checking systems and evasion attacks. George Mason University Department of Computer

Science Technical Report, 2011.

[124] Y-M Wang, Doug Beck, Binh Vo, Roussi Roussev, and Chad Verbowski. Detecting stealth software

with strider ghostbuster. In Dependable Systems and Networks, 2005. DSN 2005. Proceedings.

International Conference on, pages 368–377. IEEE, 2005.

[125] Filip Wecherowski. A real smm rootkit: Reversing and hooking bios smi handlers. Phrack Magazine,

13(66), 2009.

[126] Andrew White, Bradley Schatz, and Ernest Foo. Integrity verification of user space code. Digital

Investigation, 10:S59–S68, 2013.

[127] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated dynamic malware analysis

using cwsandbox. Security & Privacy, IEEE, 5(2):32–39, 2007.

[128] Carsten Willems, Ralf Hund, and Thorsten Holz. Cxpinspector: Hypervisor-based, hardware-assisted

system monitoring. Technical report, Ruhr-Universitat Bochum, 2013.

[129] Rafal Wojtczuk and Joanna Rutkowska. Attacking smm memory via intel cpu cache poisoning. Invis-

ible Things Lab, 2009.

[130] Glenn Wurster, Paul Van Oorschot, and Anil Somayaji. A generic attack on checksumming-based

software tamper resistance. In Security and Privacy, 2005 IEEE Symposium on, pages 127–138.

IEEE, 2005.

[131] James Wyke. The zeroaccess rootkit. http://sophosnews.files.wordpress.com/2012/

04/zeroaccess2.pdf, 2012.

[132] Ilsun You and Kangbin Yim. Malware obfuscation techniques: A brief survey. In Broadband, Wireless

Computing, Communication and Applications (BWCCA), 2010 International Conference on, pages

297–300. IEEE, 2010.

[133] Dennis Yurichev. Reverse Engineering for Beginners. http://beginners.re, 2015.

143

http://sophosnews.files.wordpress.com/2012/04/zeroaccess2.pdf
http://sophosnews.files.wordpress.com/2012/04/zeroaccess2.pdf

[134] Fengwei Zhang, Kevin Leach, Kun Sun, and Angelos Stavrou. Spectre: A dependable introspection

framework via system management mode. In Dependable Systems and Networks (DSN), 2013 43rd

Annual IEEE/IFIP International Conference on, pages 1–12. IEEE, 2013.

[135] HongWei Zhou, Xin Wu, WenChang Shi, JinHui Yuan, and Bin Liang. Hdrop: Detecting rop attacks

using performance monitoring counters. In Xinyi Huang and Jianying Zhou, editors, Information

Security Practice and Experience, volume 8434 of Lecture Notes in Computer Science, pages 172–

186. Springer International Publishing, 2014.

144

	Introduction
	Problem statement
	Scope
	Methodology and Limitations
	Publications
	Outline

	Related work
	Malware collection
	Malware analysis
	Monitoring via Hardware Virtualization
	In-band delivery
	Out-of-band delivery

	Malware collection
	Challenges
	System Design
	Hardware virtualization based subsystem
	Network setup and fall-back system
	Fidelity and the path to Scalability

	Initial Experiments
	Performance
	Testing with Metasploit
	Rootkits
	Live sessions

	Improving Scalability
	Memory sharing
	Clone-routing

	Final Experiments
	Idle clones
	SMB and RDP
	Live sessions

	Summary

	Malware analysis
	Challenges
	Overview of Hardware Virtualization Extensions
	VM Scheduling
	Optional Traps
	Two-stage paging

	System design
	Stealth
	Execution tracing
	Tackling dkom attacks
	Monitoring filesystem accesses with memory events
	Carving deleted files from memory

	Experimental results
	Rootkits
	Anti-VM malware samples
	100k+ samples
	Stalling code
	Measuring overhead and throughput

	Summary

	Hardware and Software limitations
	Evading monitoring
	Attacks via the TLB
	The effects of tagged TLB

	Limitations of the EPT
	Catching modifications
	Catching data-leaks
	Virtual DMA and emulation

	Layers below the hypervisor
	ARM TrustZone
	System Management Mode
	Dual-monitor mode SMM

	Summary

	Conclusions
	Summary
	Contributions
	Future directions
	Intel Virtualization Exceptions
	Mobile malware
	Data-only malware

	Concluding thoughts

	Acronyms
	Appendix A
	References

